Some New Notions of Continuity in Generalized Primal Topological Space

This study analyzes the characteristics and functioning of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantic...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Shahbaz, Tayyab Kamran, Umar Ishtiaq, Mariam Imtiaz, Ioan-Lucian Popa, Fethi Mohamed Maiz
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/24/3995
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850086905725583360
author Muhammad Shahbaz
Tayyab Kamran
Umar Ishtiaq
Mariam Imtiaz
Ioan-Lucian Popa
Fethi Mohamed Maiz
author_facet Muhammad Shahbaz
Tayyab Kamran
Umar Ishtiaq
Mariam Imtiaz
Ioan-Lucian Popa
Fethi Mohamed Maiz
author_sort Muhammad Shahbaz
collection DOAJ
description This study analyzes the characteristics and functioning of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-homeomorphisms, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mrow><mo>∗</mo><mo>#</mo></mrow></msubsup></semantics></math></inline-formula>-homeomorphisms in generalized topological spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">GTS</mi><mo>)</mo></mrow></semantics></math></inline-formula>. A few important points to emphasize are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-irresolute functions, perfectly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous, and strongly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous functions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">GTS</mi></mrow></semantics></math></inline-formula> and generalized primal topological spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">GPTS</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Some specific kinds of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions, such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-open mappings and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-closed mappings, are discussed. We also analyze the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">GPTS</mi></mrow></semantics></math></inline-formula>, providing a thorough look at the way these functions work in this specific context. The goal here is to emphasize the concrete implications of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions and to further the theoretical understanding of them by merging different viewpoints. This work advances the area of topological research by providing new perspectives on the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions and their applicability in various topological settings. The outcomes reported here contribute to our theoretical understanding and establish a foundation for further research.
format Article
id doaj-art-83ed8a1137ba4d94af093315629f6557
institution DOAJ
issn 2227-7390
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-83ed8a1137ba4d94af093315629f65572025-08-20T02:43:20ZengMDPI AGMathematics2227-73902024-12-011224399510.3390/math12243995Some New Notions of Continuity in Generalized Primal Topological SpaceMuhammad Shahbaz0Tayyab Kamran1Umar Ishtiaq2Mariam Imtiaz3Ioan-Lucian Popa4Fethi Mohamed Maiz5Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, PakistanDepartment of Mathematics, Quaid-I-Azam University, Islamabad 45320, PakistanOffice of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, PakistanDepartment of Mathematics, The Islamia University of Bahawalpur, Bahawalnagar Campus, Bahawalpur 06314, PakistanDepartment of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, RomaniaPhysics Department, Faculty of Science, King Khalid University, Abha P.O. Box 9004, Saudi ArabiaThis study analyzes the characteristics and functioning of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-homeomorphisms, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mrow><mo>∗</mo><mo>#</mo></mrow></msubsup></semantics></math></inline-formula>-homeomorphisms in generalized topological spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">GTS</mi><mo>)</mo></mrow></semantics></math></inline-formula>. A few important points to emphasize are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-irresolute functions, perfectly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous, and strongly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous functions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">GTS</mi></mrow></semantics></math></inline-formula> and generalized primal topological spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">GPTS</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Some specific kinds of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions, such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-open mappings and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-closed mappings, are discussed. We also analyze the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">GPTS</mi></mrow></semantics></math></inline-formula>, providing a thorough look at the way these functions work in this specific context. The goal here is to emphasize the concrete implications of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions and to further the theoretical understanding of them by merging different viewpoints. This work advances the area of topological research by providing new perspectives on the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions and their applicability in various topological settings. The outcomes reported here contribute to our theoretical understanding and establish a foundation for further research.https://www.mdpi.com/2227-7390/12/24/3995generalized primal topological space<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8600"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-continuous function<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8601"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8602"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>#</mml:mo> </mml:mrow> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism<named-content content-type="equation"><inline-formula> <mml:math id="mm8403"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content><i><sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8603"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-continuous function<named-content content-type="equation"><inline-formula> <mml:math id="mm8401"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content><i><sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8604"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism
spellingShingle Muhammad Shahbaz
Tayyab Kamran
Umar Ishtiaq
Mariam Imtiaz
Ioan-Lucian Popa
Fethi Mohamed Maiz
Some New Notions of Continuity in Generalized Primal Topological Space
Mathematics
generalized primal topological space
<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8600"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-continuous function
<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8601"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism
<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8602"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>#</mml:mo> </mml:mrow> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism
<named-content content-type="equation"><inline-formula> <mml:math id="mm8403"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content><i><sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8603"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-continuous function
<named-content content-type="equation"><inline-formula> <mml:math id="mm8401"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content><i><sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8604"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism
title Some New Notions of Continuity in Generalized Primal Topological Space
title_full Some New Notions of Continuity in Generalized Primal Topological Space
title_fullStr Some New Notions of Continuity in Generalized Primal Topological Space
title_full_unstemmed Some New Notions of Continuity in Generalized Primal Topological Space
title_short Some New Notions of Continuity in Generalized Primal Topological Space
title_sort some new notions of continuity in generalized primal topological space
topic generalized primal topological space
<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8600"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-continuous function
<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8601"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism
<i>τ<sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8602"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>#</mml:mo> </mml:mrow> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism
<named-content content-type="equation"><inline-formula> <mml:math id="mm8403"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content><i><sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8603"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-continuous function
<named-content content-type="equation"><inline-formula> <mml:math id="mm8401"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content><i><sub>g</sub></i>–<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm8604"> <mml:semantics> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-homeomorphism
url https://www.mdpi.com/2227-7390/12/24/3995
work_keys_str_mv AT muhammadshahbaz somenewnotionsofcontinuityingeneralizedprimaltopologicalspace
AT tayyabkamran somenewnotionsofcontinuityingeneralizedprimaltopologicalspace
AT umarishtiaq somenewnotionsofcontinuityingeneralizedprimaltopologicalspace
AT mariamimtiaz somenewnotionsofcontinuityingeneralizedprimaltopologicalspace
AT ioanlucianpopa somenewnotionsofcontinuityingeneralizedprimaltopologicalspace
AT fethimohamedmaiz somenewnotionsofcontinuityingeneralizedprimaltopologicalspace