Some New Notions of Continuity in Generalized Primal Topological Space
This study analyzes the characteristics and functioning of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantic...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/12/24/3995 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study analyzes the characteristics and functioning of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-homeomorphisms, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mrow><mo>∗</mo><mo>#</mo></mrow></msubsup></semantics></math></inline-formula>-homeomorphisms in generalized topological spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">GTS</mi><mo>)</mo></mrow></semantics></math></inline-formula>. A few important points to emphasize are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-irresolute functions, perfectly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous, and strongly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-continuous functions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">GTS</mi></mrow></semantics></math></inline-formula> and generalized primal topological spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">GPTS</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Some specific kinds of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions, such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-open mappings and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula>-closed mappings, are discussed. We also analyze the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">GPTS</mi></mrow></semantics></math></inline-formula>, providing a thorough look at the way these functions work in this specific context. The goal here is to emphasize the concrete implications of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions and to further the theoretical understanding of them by merging different viewpoints. This work advances the area of topological research by providing new perspectives on the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>S</mi><mi>g</mi><mo>∗</mo></msubsup></semantics></math></inline-formula> functions and their applicability in various topological settings. The outcomes reported here contribute to our theoretical understanding and establish a foundation for further research. |
---|---|
ISSN: | 2227-7390 |