Analytic Investigation of a Generalized Variable-Coefficient KdV Equation with External-Force Term

This paper investigates integrable properties of a generalized variable-coefficient Korteweg–de Vries (gvcKdV) equation incorporating dissipation, inhomogeneous media, and an external-force term. Based on Painlevé analysis, sufficient and necessary conditions for the equation’s Painlevé integrabilit...

Full description

Saved in:
Bibliographic Details
Main Authors: Gongxun Li, Zhiyan Wang, Ke Wang, Nianqin Jiang, Guangmei Wei
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1642
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates integrable properties of a generalized variable-coefficient Korteweg–de Vries (gvcKdV) equation incorporating dissipation, inhomogeneous media, and an external-force term. Based on Painlevé analysis, sufficient and necessary conditions for the equation’s Painlevé integrability are obtained. Under specific integrability conditions, the Lax pair for this equation is successfully constructed using the extended Ablowitz–Kaup–Newell–Segur system (AKNS system). Furthermore, the Riccati-type Bäcklund transformation (R-BT), Wahlquist–Estabrook-type Bäcklund transformation (WE-BT), and the nonlinear superposition formula are derived. In utilizing these transformations and the formula, explicit one-soliton-like and two-soliton-like solutions are constructed from a seed solution. Moreover, the infinite conservation laws of the equation are systematically derived. Finally, the influence of variable coefficients and the external-force term on the propagation characteristics of a solitory wave is discussed, and soliton interaction is illustrated graphically.
ISSN:2227-7390