Periodic Oscillations in a Chemostat Model with Two Discrete Delays

Periodic oscillations of solutions of a chemostat-type model in which a species feeds on a limiting nutrient are considered. The model incorporates two discrete delays representing the lag in nutrient recycling and nutrient conversion. Through the study of characteristic equation associated with the...

Full description

Saved in:
Bibliographic Details
Main Authors: Tiansi Zhang, Xuehui Ji, Bo Li
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2015/306302
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Periodic oscillations of solutions of a chemostat-type model in which a species feeds on a limiting nutrient are considered. The model incorporates two discrete delays representing the lag in nutrient recycling and nutrient conversion. Through the study of characteristic equation associated with the linearized system, a unique positive equilibrium is found and proved to be locally asymptotically stable under some conditions. Meanwhile, a Hopf bifurcation causing periodic solutions is also obtained. Numerical simulations illustrate the theoretical results.
ISSN:1026-0226
1607-887X