Periodic Oscillations in a Chemostat Model with Two Discrete Delays
Periodic oscillations of solutions of a chemostat-type model in which a species feeds on a limiting nutrient are considered. The model incorporates two discrete delays representing the lag in nutrient recycling and nutrient conversion. Through the study of characteristic equation associated with the...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2015-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2015/306302 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Periodic oscillations of solutions of a chemostat-type model in which a species feeds on a limiting nutrient are considered. The model incorporates two discrete delays representing the lag in nutrient recycling and nutrient conversion. Through the study of characteristic equation associated with the linearized system, a unique positive equilibrium is found and proved to be locally asymptotically stable under some conditions. Meanwhile, a Hopf bifurcation causing periodic solutions is also obtained. Numerical simulations illustrate the theoretical results. |
|---|---|
| ISSN: | 1026-0226 1607-887X |