Advanced evaluation of performance of machine learning models for soapstock splitting optimisation under uncertainty
This study proposes a computational framework for the prediction and optimisation of soapstock splitting under conditions of limited measurement data and input uncertainty. The objective was to evaluate and select the modeling approaches based on (i) data availability, (ii) model complexity, (iii) p...
Saved in:
| Main Authors: | Bartosz Szeląg, Krzysztof Barbusiński, Michał Stachura, Przemysław Kowal, Adam Kiczko, Eldon R. Rene |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Water Resources and Industry |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2212371725000186 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Analysis of the Accuracy of Uncertainty Noise Measurement
by: Bartosz PRZYSUCHA, et al.
Published: (2015-03-01) -
Swarm Behaviour Optimisation Methods Based on an Original Algorithm
by: Krzysztof FALKOWSKI, et al.
Published: (2021-09-01) -
An Inverse Robust Optimisation Approach for a Class of Vehicle Routing Problems under Uncertainty
by: Liang Sun, et al.
Published: (2016-01-01) -
Optimising and communicating options for the control of invasive plant disease when there is epidemiological uncertainty.
by: Nik J Cunniffe, et al.
Published: (2015-04-01) -
Czy kultura czytelnicza ma płeć? O wyzwaniach angażowania mężczyzn w aktywność biblioteczną
by: Krzysztof Stachura
Published: (2024-12-01)