Enzymatic hydrolysis of buffalo casein enhances DPP-4 inhibition: Structural modifications and bioactive peptide identification

ABSTRACT: Dipeptidyl peptidase-4 (DPP-4), the enzyme responsible for the rapid degradation of incretin hormones, plays a pivotal role in blood glucose regulation, and its inhibition serves as an effective strategy for maintaining glucose homeostasis. The aim of this study was to investigate the effe...

Full description

Saved in:
Bibliographic Details
Main Authors: Ning An, Jing Yang, Yu Zhang, Huayi Suo, Jiajia Song
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Journal of Dairy Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022030224013341
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT: Dipeptidyl peptidase-4 (DPP-4), the enzyme responsible for the rapid degradation of incretin hormones, plays a pivotal role in blood glucose regulation, and its inhibition serves as an effective strategy for maintaining glucose homeostasis. The aim of this study was to investigate the effect of enzymatic hydrolysis on the structure of buffalo casein and its DPP-4 inhibitory activity. Results demonstrated that Flavorzyme effectively hydrolyzed buffalo casein, as evidenced by scanning electron microscopy and electrophoretic analysis, with the degree of hydrolysis reaching its maximum value (20.05 ± 0.14%) after 3 h. The results of circular dichroism spectra, as well as endogenous and exogenous fluorescence spectra, indicated marked alterations in the secondary and tertiary structures of buffalo casein following enzymatic hydrolysis. Additionally, the DPP-4 inhibitory effect of buffalo casein was found to increase with longer hydrolysis times. The hydrolysate obtained after 3 h of hydrolysis demonstrated the highest level of inhibition, with a half-maximal inhibitory concentration (IC50) value of 1.04 mg/mL. The DPP-4 inhibitory peptide YPFPGPIPN, with an IC50 value of 0.88 mg/mL, was identified in the 1 to 3 kDa fraction of the 3-h hydrolysate. This peptide interacted with the active site of DPP-4 via hydrogen bonds, hydrophobic interactions, salt bridges, and π-cation interactions. This study offers a novel scientific foundation for the development of functional antidiabetic foods derived from buffalo casein.
ISSN:0022-0302