Analytical Assessment of Internal Stress in Cemented Paste Backfill

To analytically describe the internal stress in a fill mass made of granular man-made material (cemented paste backfill, CPB), a new 3D effective stress model is developed. The developed model integrates Bishop effective stress principle, water retention relationship, and arching effect. All model p...

Full description

Saved in:
Bibliographic Details
Main Authors: Naifei Liu, Liang Cui, Yan Wang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2020/6666548
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To analytically describe the internal stress in a fill mass made of granular man-made material (cemented paste backfill, CPB), a new 3D effective stress model is developed. The developed model integrates Bishop effective stress principle, water retention relationship, and arching effect. All model parameters are determined from measurable experimental data. The uncertainties of the model parameters are examined by sensitivity analysis. A series of model application is conducted to investigate the effects of field conditions on the internal stress in CPB. The obtained results show that the proposed model is able to capture the influence of operation time, stope geometry, and rock/CPB interface properties on the effective stress in CPB. Hence, the developed model can be used as a useful tool for the optimal design of CPB structure.
ISSN:1687-8434
1687-8442