Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing

The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear e...

Full description

Saved in:
Bibliographic Details
Main Authors: Yue Hao, Jia-Le Tong, Suying Bai, Shao-Xiong Wu, Cheng-Hua Bai
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/7/628
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear effects through introducing the degenerate optical parametric amplifier (OPA) and mechanical squeezing. These enhanced nonlinear effects can significantly improve the photon blockade effect, effectively overcoming the limitations of weak coupling. Our theoretical analysis demonstrates the successful realization of an ideal single-photon blockade (1PB) state through optimized parameter conditions. Additionally, this joint approach significantly enhances the two-photon blockade (2PB) effect and broadens the region where 2PB occurs. This finding helps us identify the optimal system parameters to maximize two-photon emission efficiency. By precisely controlling these parameters, a new pathway is opened for more flexible manipulation and utilization of the photon blockade effect in experiments.
ISSN:2304-6732