Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand side

The paper brings multiplicity results for a Dirichlet problem in one-dimensional billiard space with right-hand side depending on the velocity of the ball, i.e. a problem in the form x'' = f(t, x, x')    if x(t) ∈ int K,       x'(t+) = -x'(t-)    if x(t) ∈ ∂K,              ...

Full description

Saved in:
Bibliographic Details
Main Authors: Vĕra Krajščáková, Jan Tomeček
Format: Article
Language:English
Published: Vilnius University Press 2024-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://ojs.test/index.php/LMR/article/view/37775
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850031687420870656
author Vĕra Krajščáková
Jan Tomeček
author_facet Vĕra Krajščáková
Jan Tomeček
author_sort Vĕra Krajščáková
collection DOAJ
description The paper brings multiplicity results for a Dirichlet problem in one-dimensional billiard space with right-hand side depending on the velocity of the ball, i.e. a problem in the form x'' = f(t, x, x')    if x(t) ∈ int K,       x'(t+) = -x'(t-)    if x(t) ∈ ∂K,                                      x(0) = A,    x(T) = B, where T > 0, K = [0, R], R > 0, f is a Carathéodory function on [0, T] × K  × ℝ, A, B ∈ int K. Sufficient conditions ensuring the existence of at least two solutions having prescribed number of impacts with the boundary of the billiard table K are obtained. In particular, if the right-hand side has at most sublinear growth in the last variable, there exist infinitely many solutions of the problem.
format Article
id doaj-art-82e725de7cf84f42aed953d939b16238
institution DOAJ
issn 0132-2818
2335-898X
language English
publishDate 2024-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj-art-82e725de7cf84f42aed953d939b162382025-08-20T02:58:54ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2024-12-0165A10.15388/LMD.2024.37775Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand sideVĕra Krajščáková0Jan Tomeček1Palacký UniversityPalacký University The paper brings multiplicity results for a Dirichlet problem in one-dimensional billiard space with right-hand side depending on the velocity of the ball, i.e. a problem in the form x'' = f(t, x, x')    if x(t) ∈ int K,       x'(t+) = -x'(t-)    if x(t) ∈ ∂K,                                      x(0) = A,    x(T) = B, where T > 0, K = [0, R], R > 0, f is a Carathéodory function on [0, T] × K  × ℝ, A, B ∈ int K. Sufficient conditions ensuring the existence of at least two solutions having prescribed number of impacts with the boundary of the billiard table K are obtained. In particular, if the right-hand side has at most sublinear growth in the last variable, there exist infinitely many solutions of the problem. https://ojs.test/index.php/LMR/article/view/37775billiard problemDirichlet problemmultiplicity resultsublinear growthlinear growth
spellingShingle Vĕra Krajščáková
Jan Tomeček
Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand side
Lietuvos Matematikos Rinkinys
billiard problem
Dirichlet problem
multiplicity result
sublinear growth
linear growth
title Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand side
title_full Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand side
title_fullStr Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand side
title_full_unstemmed Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand side
title_short Dirichlet problem in one-dimensional billiard space with velocity dependent right-hand side
title_sort dirichlet problem in one dimensional billiard space with velocity dependent right hand side
topic billiard problem
Dirichlet problem
multiplicity result
sublinear growth
linear growth
url https://ojs.test/index.php/LMR/article/view/37775
work_keys_str_mv AT verakrajscakova dirichletprobleminonedimensionalbilliardspacewithvelocitydependentrighthandside
AT jantomecek dirichletprobleminonedimensionalbilliardspacewithvelocitydependentrighthandside