Implementing a Hybrid Quantum Neural Network for Wind Speed Forecasting: Insights from Quantum Simulator Experiences

The intermittent nature of wind speed poses challenges for its widespread utilization as an electrical power generation source. As the integration of wind energy into the power system increases, accurate wind speed forecasting becomes crucial. The reliable scheduling of wind power generation heavily...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying-Yi Hong, Jay Bhie D. Santos
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/7/1771
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intermittent nature of wind speed poses challenges for its widespread utilization as an electrical power generation source. As the integration of wind energy into the power system increases, accurate wind speed forecasting becomes crucial. The reliable scheduling of wind power generation heavily relies on precise wind speed forecasts. This paper presents an extended work that focuses on a hybrid model for 24 h ahead wind speed forecasting. The proposed model combines residual Long Short-Term Memory (LSTM) and a quantum neural network that is studied by a quantum simulator, leveraging the support of NVIDIA Compute Unified Device Architecture (CUDA). To ensure the desired accuracy, a comparative analysis is conducted, examining the qubit count and quantum circuit depth of the proposed model. The execution time required for the model is significantly reduced when the GPU incorporates CUDA, accounting for only 8.29% of the time required by a classical CPU. In addition, different quantum embedding layers with various entangler layers in the quantum neural network are explored. The simulation results utilizing an offshore wind farm dataset demonstrate that the proper number of qubits and embedding layer can achieve favorable 24 h ahead wind speed forecasts.
ISSN:1996-1073