Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel Engines

This study examines the emissions generated by a tall ship of 81.36 m length under various operating conditions, focusing particularly on carbon dioxide emissions at different navigation speeds. The main purpose of the paper is to establish theoretical and practical methods for calculating and measu...

Full description

Saved in:
Bibliographic Details
Main Authors: Octavian Narcis Volintiru, Daniel Mărășescu, Doru Coșofreț, Adrian Popa
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fire
Subjects:
Online Access:https://www.mdpi.com/2571-6255/8/6/240
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849432660751941632
author Octavian Narcis Volintiru
Daniel Mărășescu
Doru Coșofreț
Adrian Popa
author_facet Octavian Narcis Volintiru
Daniel Mărășescu
Doru Coșofreț
Adrian Popa
author_sort Octavian Narcis Volintiru
collection DOAJ
description This study examines the emissions generated by a tall ship of 81.36 m length under various operating conditions, focusing particularly on carbon dioxide emissions at different navigation speeds. The main purpose of the paper is to establish theoretical and practical methods for calculating and measuring the level of CO<sub>2</sub> emitted by the ship engines. Additionally, this article compares the results of carbon dioxide emission calculations based on theoretical methods with the results of real measurements. The paper verifies and assesses the carbon dioxide emission calculation methods compared to the emissions measured in real conditions for diesel engines. A comparative analysis of several methods for determining CO<sub>2</sub> emissions leads to much more accurate and conclusive results close to reality. The results obtained through empirical and theoretical methods for determining CO<sub>2</sub> emissions from the main engine demonstrate that the difference between these values is more accurate at lower engine loads but shows discrepancies at higher loads due to real-world inefficiencies, combustion variations, and model simplifications. The measured CO<sub>2</sub> emission values for auxiliary engines at 60% load demonstrate consistency and closely reflect real operating conditions, while analytical calculations tend to be higher due to theoretical losses and model assumptions. Stoichiometric values fall in between, assuming ideal combustion but lacking adjustments for real variables. This highlights the efficiency of the diesel generator and the importance of empirical data in capturing actual emissions more accurately. The investigation aims to provide a detailed understanding of CO<sub>2</sub> emission variations based on the ship’s operating parameters, including the study of these emissions at the level of the main diesel propulsion engine as well as the auxiliary engines. By analyzing these methods for determining engine emissions, conclusions can be reached about aspects such as the following: engine wear condition, efficiency losses, or incomplete combustion. This analysis has the potential to guide the implementation of new policies and technologies aimed at minimizing the carbon footprint of a reference ship, considering the importance of sustainable resource management and environmental protection in a viable long-term manner.
format Article
id doaj-art-82b5f538ffa646b5a5a83f863894fec0
institution Kabale University
issn 2571-6255
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Fire
spelling doaj-art-82b5f538ffa646b5a5a83f863894fec02025-08-20T03:27:18ZengMDPI AGFire2571-62552025-06-018624010.3390/fire8060240Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel EnginesOctavian Narcis Volintiru0Daniel Mărășescu1Doru Coșofreț2Adrian Popa3Naval Academy “Mircea cel Bătrân”, Fulgerului 1, 900218 Constanta, RomaniaNaval Academy “Mircea cel Bătrân”, Fulgerului 1, 900218 Constanta, RomaniaNaval Academy “Mircea cel Bătrân”, Fulgerului 1, 900218 Constanta, RomaniaNaval Academy “Mircea cel Bătrân”, Fulgerului 1, 900218 Constanta, RomaniaThis study examines the emissions generated by a tall ship of 81.36 m length under various operating conditions, focusing particularly on carbon dioxide emissions at different navigation speeds. The main purpose of the paper is to establish theoretical and practical methods for calculating and measuring the level of CO<sub>2</sub> emitted by the ship engines. Additionally, this article compares the results of carbon dioxide emission calculations based on theoretical methods with the results of real measurements. The paper verifies and assesses the carbon dioxide emission calculation methods compared to the emissions measured in real conditions for diesel engines. A comparative analysis of several methods for determining CO<sub>2</sub> emissions leads to much more accurate and conclusive results close to reality. The results obtained through empirical and theoretical methods for determining CO<sub>2</sub> emissions from the main engine demonstrate that the difference between these values is more accurate at lower engine loads but shows discrepancies at higher loads due to real-world inefficiencies, combustion variations, and model simplifications. The measured CO<sub>2</sub> emission values for auxiliary engines at 60% load demonstrate consistency and closely reflect real operating conditions, while analytical calculations tend to be higher due to theoretical losses and model assumptions. Stoichiometric values fall in between, assuming ideal combustion but lacking adjustments for real variables. This highlights the efficiency of the diesel generator and the importance of empirical data in capturing actual emissions more accurately. The investigation aims to provide a detailed understanding of CO<sub>2</sub> emission variations based on the ship’s operating parameters, including the study of these emissions at the level of the main diesel propulsion engine as well as the auxiliary engines. By analyzing these methods for determining engine emissions, conclusions can be reached about aspects such as the following: engine wear condition, efficiency losses, or incomplete combustion. This analysis has the potential to guide the implementation of new policies and technologies aimed at minimizing the carbon footprint of a reference ship, considering the importance of sustainable resource management and environmental protection in a viable long-term manner.https://www.mdpi.com/2571-6255/8/6/240emissionsdieselengineefficiencyshipfuel
spellingShingle Octavian Narcis Volintiru
Daniel Mărășescu
Doru Coșofreț
Adrian Popa
Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel Engines
Fire
emissions
diesel
engine
efficiency
ship
fuel
title Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel Engines
title_full Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel Engines
title_fullStr Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel Engines
title_full_unstemmed Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel Engines
title_short Aspects Regarding the CO<sub>2</sub> Footprint Developed by Marine Diesel Engines
title_sort aspects regarding the co sub 2 sub footprint developed by marine diesel engines
topic emissions
diesel
engine
efficiency
ship
fuel
url https://www.mdpi.com/2571-6255/8/6/240
work_keys_str_mv AT octaviannarcisvolintiru aspectsregardingthecosub2subfootprintdevelopedbymarinedieselengines
AT danielmarasescu aspectsregardingthecosub2subfootprintdevelopedbymarinedieselengines
AT dorucosofret aspectsregardingthecosub2subfootprintdevelopedbymarinedieselengines
AT adrianpopa aspectsregardingthecosub2subfootprintdevelopedbymarinedieselengines