Riemann–Roch for the ring $\mathbb{Z}$
We show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of...
Saved in:
Main Authors: | Connes, Alain, Consani, Caterina |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-05-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $
by: Fawaz Aseeri
Published: (2024-11-01) -
Distribution of matrices over $\mathbb{F}_q[x]$
by: Ji, Yibo
Published: (2024-10-01) -
David Roche, Inglourious Basterds de Quentin Tarantino
by: Julien Achemchame
Published: (2020-06-01) -
KÄHLER DIFFERENTIAL MODULES AND CONFIGURATIONS OF POINTS IN \(\mathbb{P}^2\)
by: Nguyen Khanh Linh Tran, et al.
Published: (2022-01-01) -
A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
by: Druel, Stéphane, et al.
Published: (2024-06-01)