On Zero-Divisor Graphs of <i>Z<sub>n</sub></i> When <i>n</i> Is Square-Free
In this article, some properties of the zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi>Z</mi><mi>n</mi&g...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/3/180 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article, some properties of the zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi>Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> are investigated when <i>n</i> is a square-free positive integer. It is shown that the zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi>Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> of ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Z</mi><mi>n</mi></msub></semantics></math></inline-formula> is a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mn>2</mn><mi>k</mi></msup><mo>−</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-partite graph when the prime decomposition of <i>n</i> contains <i>k</i> distinct square-free primes using the method of congruence relation. We present some examples, accompanied by graphic representations, to achieve the desired results. It is also obtained that the zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi>Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> is Eulerian if n is a square-free odd integer. Since <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Z</mi><mi>n</mi></msub></semantics></math></inline-formula> is a semisimple ring when <i>n</i> is square-free, the results can be generalized to characterize semisimple rings and modules, as well as rings satisfying Artinian and Noetherian conditions through the properties of their zero-divisor graphs. We endeavored to show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a partite graph with a certain condition on <i>n</i> and also that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a complete graph when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> for a prime <i>p</i> as part of a corollary. To prove these results, we employed the assistance of several theoretic congruence relations that grabbed our attention, making the investigation more interesting. |
|---|---|
| ISSN: | 2075-1680 |