Antenna Array Design in MIMO Radar Using NSK Polynomial Factorization Algorithm

The work presented here is concerned with the antenna array design in collocated multiple-input multiple-output (MIMO) radars. After knowing the system requirements, the antenna array design problem is formulated as a standard polynomial factorization. In addition, an algorithm based on Newton-Schub...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuainan Gu, Ke Li, Xiukun Ren, Na-e Zheng
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2016/4580479
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The work presented here is concerned with the antenna array design in collocated multiple-input multiple-output (MIMO) radars. After knowing the system requirements, the antenna array design problem is formulated as a standard polynomial factorization. In addition, an algorithm based on Newton-Schubert-Kronecker (NSK) polynomial factorization is proposed. The algorithm contains three steps. First, linear factors are extracted by extended Vieta theorem. Then, undermined high-order factors are confirmed with Newton interpolation and certain high-order factors should be searched for within the undermined ones. Finally, the antenna array configurations are determined according to the result of polynomial factorization. Simulations confirm the wide use of the proposed algorithm in MIMO radar antenna array design.
ISSN:1687-5869
1687-5877