Unified Model and Survey on Modulation Schemes for Next-Generation Automotive Radar Systems
Commercial automotive radar systems for advanced driver assistance systems (ADASs) have relied on frequency-modulated continuous wave (FMCW) waveforms for years due to their low-cost hardware, simple signal processing, and established academic and industrial expertise. However, FMCW systems face sev...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/8/1355 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Commercial automotive radar systems for advanced driver assistance systems (ADASs) have relied on frequency-modulated continuous wave (FMCW) waveforms for years due to their low-cost hardware, simple signal processing, and established academic and industrial expertise. However, FMCW systems face several challenges, including limited unambiguous velocity, restricted multiplexing of transmit signals, and susceptibility to interference. This work introduces a unified automotive radar signal model and reviews the alternative modulation schemes such as phase-coded frequency-modulated continuous wave (PC-FMCW), phase-modulated continuous wave (PMCW), orthogonal frequency-division multiplexing (OFDM), orthogonal chirp division multiplexing (OCDM), and orthogonal time frequency space (OTFS). These schemes are assessed against key technological and economic criteria and compared with FMCW, highlighting their respective strengths and limitations. |
|---|---|
| ISSN: | 2072-4292 |