Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.

This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the modulus N = p2q where p and q are balanced large primes. Suppose [Formula: see text] satisfying gcd(e, ϕ(N)) = 1 where ϕ(N) = p(p - 1)(q - 1) and d < Nδ be its multiplicative inverse. From ed - kϕ(N) = 1, b...

Full description

Saved in:
Bibliographic Details
Main Authors: Nurul Nur Hanisah Adenan, Muhammad Rezal Kamel Ariffin, Faridah Yunos, Siti Hasana Sapar, Muhammad Asyraf Asbullah
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248888&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850025507494559744
author Nurul Nur Hanisah Adenan
Muhammad Rezal Kamel Ariffin
Faridah Yunos
Siti Hasana Sapar
Muhammad Asyraf Asbullah
author_facet Nurul Nur Hanisah Adenan
Muhammad Rezal Kamel Ariffin
Faridah Yunos
Siti Hasana Sapar
Muhammad Asyraf Asbullah
author_sort Nurul Nur Hanisah Adenan
collection DOAJ
description This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the modulus N = p2q where p and q are balanced large primes. Suppose [Formula: see text] satisfying gcd(e, ϕ(N)) = 1 where ϕ(N) = p(p - 1)(q - 1) and d < Nδ be its multiplicative inverse. From ed - kϕ(N) = 1, by utilizing the extended strategy of Jochemsz and May, our attack works when the primes share a known amount of Least Significant Bits(LSBs). This is achievable since we obtain the small roots of our specially constructed integer polynomial which leads to the factorization of N. More specifically we show that N can be factored when the bound [Formula: see text]. Our attack enhances the bound of some former attacks upon N = p2q.
format Article
id doaj-art-80fad9566f9049bca129ccb1a5f91bcf
institution DOAJ
issn 1932-6203
language English
publishDate 2021-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-80fad9566f9049bca129ccb1a5f91bcf2025-08-20T03:00:49ZengPublic Library of Science (PLoS)PLoS ONE1932-62032021-01-01163e024888810.1371/journal.pone.0248888Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.Nurul Nur Hanisah AdenanMuhammad Rezal Kamel AriffinFaridah YunosSiti Hasana SaparMuhammad Asyraf AsbullahThis paper presents a cryptanalytic approach on the variants of the RSA which utilizes the modulus N = p2q where p and q are balanced large primes. Suppose [Formula: see text] satisfying gcd(e, ϕ(N)) = 1 where ϕ(N) = p(p - 1)(q - 1) and d < Nδ be its multiplicative inverse. From ed - kϕ(N) = 1, by utilizing the extended strategy of Jochemsz and May, our attack works when the primes share a known amount of Least Significant Bits(LSBs). This is achievable since we obtain the small roots of our specially constructed integer polynomial which leads to the factorization of N. More specifically we show that N can be factored when the bound [Formula: see text]. Our attack enhances the bound of some former attacks upon N = p2q.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248888&type=printable
spellingShingle Nurul Nur Hanisah Adenan
Muhammad Rezal Kamel Ariffin
Faridah Yunos
Siti Hasana Sapar
Muhammad Asyraf Asbullah
Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.
PLoS ONE
title Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.
title_full Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.
title_fullStr Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.
title_full_unstemmed Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.
title_short Analytical cryptanalysis upon N = p2q utilizing Jochemsz-May strategy.
title_sort analytical cryptanalysis upon n p2q utilizing jochemsz may strategy
url https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248888&type=printable
work_keys_str_mv AT nurulnurhanisahadenan analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT muhammadrezalkamelariffin analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT faridahyunos analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT sitihasanasapar analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT muhammadasyrafasbullah analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy