Observed three‐dimensional structure of ocean cooling induced by Pacific tropical cyclones

Abstract Sea surface cooling along tropical cyclone (TC) tracks has been well observed, but a complete understanding of the full three‐dimensional structure of upper ocean TC‐induced cooling is still needed. In this study, observed ocean temperature profiles derived from Argo floats and TC statistic...

Full description

Saved in:
Bibliographic Details
Main Authors: Guihua Wang, Lingwei Wu, Nathaniel C. Johnson, Zheng Ling
Format: Article
Language:English
Published: Wiley 2016-07-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1002/2016GL069605
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Sea surface cooling along tropical cyclone (TC) tracks has been well observed, but a complete understanding of the full three‐dimensional structure of upper ocean TC‐induced cooling is still needed. In this study, observed ocean temperature profiles derived from Argo floats and TC statistics from 1996 to 2012 are used to determine the three‐dimensional structure of TC‐induced cooling over the northwest Pacific. The average TC‐induced sea surface temperature change derived from Argo reaches −1.4°C, which agrees well with satellite‐derived estimates. The Argo profiles further reveal that this cooling can extend to a depth of ~30 m and can persist for about 20 days. The time scale of cooling recovery is somewhat longer in subsurface layers between a depth of ~10–15 m. Over the ocean domain where the mixed layer is shallower (deeper), the cooling is stronger (weaker), shallower (deeper), and more (less) persistent. The effect of initial MLD on the cooling derived from Argo observations may be only half of the idealized piecewise continuous model of tropical cyclone. These findings have implications for the total upper ocean heat content change induced by northwest Pacific TCs.
ISSN:0094-8276
1944-8007