Existence of Positive Solutions to Nonlinear Fractional Boundary Value Problem with Changing Sign Nonlinearity and Advanced Arguments

We discuss the existence of positive solutions to a class of fractional boundary value problem with changing sign nonlinearity and advanced arguments Dαx(t)+μh(t)f(x(a(t)))=0,t∈(0,1),2<α≤3,μ>0,x(0)=x′(0)=0,x(1)=βx(η)+λ[x],β>0, and  η∈(0,1), where Dα is the standard Riemann-Liouville derivat...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaocai Hao, Yubo Huang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/158436
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We discuss the existence of positive solutions to a class of fractional boundary value problem with changing sign nonlinearity and advanced arguments Dαx(t)+μh(t)f(x(a(t)))=0,t∈(0,1),2<α≤3,μ>0,x(0)=x′(0)=0,x(1)=βx(η)+λ[x],β>0, and  η∈(0,1), where Dα is the standard Riemann-Liouville derivative, f:[0,∞)→[0,∞) is continuous, f(0)>0, h :[0,1]→(−∞,+∞), and a(t) is the advanced argument. Our analysis relies on a nonlinear alternative of Leray-Schauder type. An example is given to illustrate our results.
ISSN:1085-3375
1687-0409