Smart Grids in the Context of Smart Cities: A Literature Review and Gap Analysis
Cities host over 50% of the world’s population and account for nearly 75% of the world’s energy consumption and 80% of the global greenhouse gas emissions. Consequently, ensuring a smart way to organize cities is paramount for the quality of life and efficiency of resource use, with emphasis on the...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/5/1186 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cities host over 50% of the world’s population and account for nearly 75% of the world’s energy consumption and 80% of the global greenhouse gas emissions. Consequently, ensuring a smart way to organize cities is paramount for the quality of life and efficiency of resource use, with emphasis on the use and management of energy, under the context of the energy trilemma, where the objectives of sustainability, security, and affordability need to be balanced. Electrification associated with the use of renewable energy generation is increasingly seen as the most efficient way to reduce the impact of energy use on GHG emissions and natural resource depletion. Electrification poses significant challenges to the development and management of the electrical infrastructure, requiring the deployment of Smart Grids, which emerge as a key development of Smart Cities. Our review targets the intersection between Smart Cities and Smart Grids. Several key components of a Smart City in the context of Smart Grids are reviewed, including elements such as metering, IoT, renewable energy sources and other distributed energy resources, grid monitoring, artificial intelligence, electric vehicles, or buildings. Case studies and pilots are reviewed, and metrics concerning existing deployments are identified. A portfolio of 16 solutions that may contribute to bringing Smart Grid solutions to the level of the city or urban settings is identified, as well as 11 gaps existing for effective and efficient deployment. We place these solutions in the context of the energy trilemma and of the Smart Grid Architecture Model. We posit that depending on the characteristics of the urban setting, including size, location, geography, a mix of economic activities, or topology, the most appropriate set of solutions can be identified, and an indicative roadmap can be built. |
|---|---|
| ISSN: | 1996-1073 |