Mapping Crop Types and Cropping Patterns Using Multiple-Source Satellite Datasets in Subtropical Hilly and Mountainous Region of China

A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed pixels...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaoliang Chen, Zhiying Xu, Hongfeng Xu, Zhihong Xu, Dacheng Wang, Xiaojian Yan
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2282
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed pixels resulted from fragmented patches and difficulty in obtaining optical satellites due to a frequently cloudy and rainy climate. Here we propose a crop type and cropping pattern mapping framework in subtropical hilly and mountainous areas, considering multiple sources of satellites (i.e., Landsat 8/9, Sentinel-2, and Sentinel-1 images and GF 1/2/7). To develop this framework, six types of variables from multi-sources data were applied in a random forest classifier to map major summer crop types (singe-cropped rice and double-cropped rice) and winter crop types (rapeseed). Multi-scale segmentation methods were applied to improve the boundaries of the classified results. The results show the following: (1) Each type of satellite data has at least one variable selected as an important feature for both winter and summer crop type classification. Apart from the endmember variables, the other five extracted variable types are selected by the RF classifier for both winter and summer crop classifications. (2) SAR data can capture the key information of summer crops when optical data is limited, and the addition of SAR data can significantly improve the accuracy as to summer crop types. (3) The overall accuracy (OA) of both summer and winter crop type mapping exceeded 95%, with clear and relatively accurate cropland boundaries. Area evaluation showed a small bias in terms of the classified area of rapeseed, single-cropped rice, and double-cropped rice from statistical records. (4) Further visual examination of the spatial distribution showed a better performance of the classified crop types compared to three existing products. The results suggest that the proposed method has great potential in accurately mapping crop types in a complex subtropical planting environment.
ISSN:2072-4292