Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ball

We prove the uniqueness of positive radial solution to the $(p,q)$-Laplacian problem \begin{equation*} \left\{ \begin{aligned} -\Delta _{p}u-\Delta _{q}u={}&\lambda f(u)\quad \text{in }\Omega , \\ u={}&0\quad \text{on }\partial \Omega ,% \end{aligned}% \right. \end{equation*} where $p>...

Full description

Saved in:
Bibliographic Details
Main Authors: Dang Dinh Hai, Xiao Wang
Format: Article
Language:English
Published: University of Szeged 2025-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11412
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849318353707991040
author Dang Dinh Hai
Xiao Wang
author_facet Dang Dinh Hai
Xiao Wang
author_sort Dang Dinh Hai
collection DOAJ
description We prove the uniqueness of positive radial solution to the $(p,q)$-Laplacian problem \begin{equation*} \left\{ \begin{aligned} -\Delta _{p}u-\Delta _{q}u={}&\lambda f(u)\quad \text{in }\Omega , \\ u={}&0\quad \text{on }\partial \Omega ,% \end{aligned}% \right. \end{equation*} where $p>q>1$, $\Delta_{r}u=\operatorname{div}(|\nabla u|^{r-2}\nabla u)$, $\Omega =B(0,1)$ is the open unit ball in $\mathbb{R}^{N}$, $f:(0,\infty )\rightarrow \mathbb{R\ }$ is $q$-sublinear at $\infty $ with possible semipositone structure at $0$, and $\lambda >0$ is a large parameter.
format Article
id doaj-art-7ff9b21303e143a2aadd1f8b7b860c64
institution Kabale University
issn 1417-3875
language English
publishDate 2025-07-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-7ff9b21303e143a2aadd1f8b7b860c642025-08-20T03:50:53ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752025-07-0120253411310.14232/ejqtde.2025.1.3411412Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ballDang Dinh Hai0https://orcid.org/0000-0002-9927-0793Xiao WangMississippi State University, Mississippi State, USAWe prove the uniqueness of positive radial solution to the $(p,q)$-Laplacian problem \begin{equation*} \left\{ \begin{aligned} -\Delta _{p}u-\Delta _{q}u={}&\lambda f(u)\quad \text{in }\Omega , \\ u={}&0\quad \text{on }\partial \Omega ,% \end{aligned}% \right. \end{equation*} where $p>q>1$, $\Delta_{r}u=\operatorname{div}(|\nabla u|^{r-2}\nabla u)$, $\Omega =B(0,1)$ is the open unit ball in $\mathbb{R}^{N}$, $f:(0,\infty )\rightarrow \mathbb{R\ }$ is $q$-sublinear at $\infty $ with possible semipositone structure at $0$, and $\lambda >0$ is a large parameter.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11412$(pq)$-laplacianpositive solutionsuniqueness
spellingShingle Dang Dinh Hai
Xiao Wang
Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ball
Electronic Journal of Qualitative Theory of Differential Equations
$(p
q)$-laplacian
positive solutions
uniqueness
title Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ball
title_full Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ball
title_fullStr Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ball
title_full_unstemmed Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ball
title_short Uniqueness of positive radial solutions for a class of $(p,q)$-Laplacian problems in a ball
title_sort uniqueness of positive radial solutions for a class of p q laplacian problems in a ball
topic $(p
q)$-laplacian
positive solutions
uniqueness
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11412
work_keys_str_mv AT dangdinhhai uniquenessofpositiveradialsolutionsforaclassofpqlaplacianproblemsinaball
AT xiaowang uniquenessofpositiveradialsolutionsforaclassofpqlaplacianproblemsinaball