Siblicide between fertilized and unfertilized ovaries within the maize ear
Abstract Evolutionarily, plants overproduce ovaries but selectively eliminate those inferiors to ensure competitive offspring to set. This sibling rivalry, reducing grain number, is detrimental agronomically. However, the interaction between early-fertilized and unfertilized ovaries in sequentially-...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Communications Biology |
| Online Access: | https://doi.org/10.1038/s42003-025-07784-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Evolutionarily, plants overproduce ovaries but selectively eliminate those inferiors to ensure competitive offspring to set. This sibling rivalry, reducing grain number, is detrimental agronomically. However, the interaction between early-fertilized and unfertilized ovaries in sequentially-pollinated panicles is unclear. Here, we fertilized the ovaries on half rows of maize ear (HP) while keeping the rest unfertilized to investigate their interaction. HP reduced the growth of unfertilized ovaries while promoting fertilized ovary (grain) development. 13C-isotope labeling of grains led to isotope signal detected in the unlabeled ovaries, validating their interactions. Transcriptionally, HP caused cell wall degradation and senescence of unfertilized ovaries, reducing their viability. These ovaries showed promoted auxin and jasmonic acid levels with activated auxin signaling but suppressed MAPK signaling. Conversely, HP grains activated MAPK signaling, sugar utilization, and cell proliferation. These findings demonstrate that grains suppress ovaries in ear to consolidate sugar utilization advantage for development, potentially through hormone and MAPK signaling. |
|---|---|
| ISSN: | 2399-3642 |