Optimization of Dynamic SSVEP Paradigms for Practical Application: Low-Fatigue Design with Coordinated Trajectory and Speed Modulation and Gaming Validation

Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation para...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Huang, Lei Cao, Yongru Chen, Ting Wang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4727
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation paradigm combining periodic motion trajectories with speed control. Using four frequencies (6, 8.57, 10, 12 Hz) and three waveform patterns (sinusoidal, square, sawtooth), speed was modulated at 1/5, 1/10, and 1/20 of each frequency’s base rate. An offline experiment with 17 subjects showed that the low-speed sinusoidal and sawtooth trajectories matched the static accuracy (85.84% and 83.82%) while reducing cognitive workload by 22%. An online experiment with 12 subjects participating in a fruit-slicing game confirmed its practicality, achieving recognition accuracies above 82% and a System Usability Scale score of 75.96. These results indicate that coordinated trajectory and speed modulation preserves SSVEP signal quality and enhances user experience, offering a promising approach for fatigue-resistant, user-friendly BCI application.
ISSN:1424-8220