At-Home Stroke Neurorehabilitation: Early Findings with the NeuroExo BCI System

Background: Democratized access to safe and effective robotic neurorehabilitation for stroke survivors requires innovative, affordable solutions that can be used not only in clinics but also at home. This requires the high usability of the devices involved to minimize costs associated with support f...

Full description

Saved in:
Bibliographic Details
Main Authors: Juan José González-España, Lianne Sánchez-Rodríguez, Maxine Annel Pacheco-Ramírez, Jeff Feng, Kathryn Nedley, Shuo-Hsiu Chang, Gerard E. Francisco, Jose L. Contreras-Vidal
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/5/1322
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Democratized access to safe and effective robotic neurorehabilitation for stroke survivors requires innovative, affordable solutions that can be used not only in clinics but also at home. This requires the high usability of the devices involved to minimize costs associated with support from physical therapists or technicians. Methods: This paper describes the early findings of the NeuroExo brain–machine interface (BMI) with an upper-limb robotic exoskeleton for stroke neurorehabilitation. This early feasibility study consisted of a six-week protocol, with an initial training and BMI calibration phase at the clinic followed by 60 sessions of neuromotor therapy at the homes of the participants. Pre- and post-assessments were used to assess users’ compliance and system performance. Results: Participants achieved a compliance rate between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>21</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula>, with an average of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>69</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while maintaining adequate signal quality and a positive perceived BMI performance during home usage with an average Likert scale score of four out of five. Moreover, adequate signal quality was maintained for four out of five participants throughout the protocol. These findings provide valuable insights into essential components for comprehensive rehabilitation therapy for stroke survivors. Furthermore, linear mixed-effects statistical models showed a significant reduction in trial duration (<i>p</i>-value < 0.02) and concomitant changes in brain patterns (<i>p</i>-value < 0.02). Conclusions: the analysis of these findings suggests that a low-cost, safe, simple-to-use BMI system for at-home stroke rehabilitation is feasible.
ISSN:1424-8220