Formation mechanism of the steel/nickel heterogeneous metal interwoven by the arc additive manufacturing process

To enhance the overall forming strength of steel/nickel tubular structures (Ni-clad inner wall and steel-shell outer wall), this study employed double-wire arc additive manufacturing technology and proposed an outward-inward and bottom-up double-wire interwoven path strategy. The deposition temperat...

Full description

Saved in:
Bibliographic Details
Main Authors: Benshun ZHANG, Zheng ZHANG, Hongwei SUN, Yugang MIAO, Yuyang ZHAO, Yu LIU
Format: Article
Language:zho
Published: Editorial Office of Transactions of the China Welding Institution, Welding Journals Publishing House 2025-05-01
Series:Hanjie xuebao
Subjects:
Online Access:https://doi.org/10.12073/j.hjxb.20240321003
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To enhance the overall forming strength of steel/nickel tubular structures (Ni-clad inner wall and steel-shell outer wall), this study employed double-wire arc additive manufacturing technology and proposed an outward-inward and bottom-up double-wire interwoven path strategy. The deposition temperature field was monitored using infrared thermal imaging, while electron backscatter diffraction (EBSD) was applied to analyze the interface of metallographic specimens. Results showed defect-free formation with no apparent cracks or deformations in the integrated structure. Both inner and outer layers exhibited minimal temperature variations during deposition, showing negligible impact on geometric forming accuracy. The steel-nickel interface presented an interwoven morphology with non-preferentially oriented grains on both sides, existing as a mutual solid solution. Localized stress concentration was observed at the interwoven interface, where grains maintained stable configurations without significant recrystallization. This proposed interwoven path strategy achieves Fe/Ni interface solid solution strengthening and mechanical interlocking, providing a novel approach for high-performance additive manufacturing of dissimilar metal structures.
ISSN:0253-360X