Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach Spaces

Using the fixed point approach, we investigate a general hyperstability results for the following k-cubic functional equations fkx+y+fkx−y=kfx+y+kfx−y+2kk2−1fx, where k is a fixed positive integer ≥2, in ultrametric Banach spaces.

Saved in:
Bibliographic Details
Main Authors: Youssef Aribou, Mohamed Rossafi
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2020/8843464
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849409896198438912
author Youssef Aribou
Mohamed Rossafi
author_facet Youssef Aribou
Mohamed Rossafi
author_sort Youssef Aribou
collection DOAJ
description Using the fixed point approach, we investigate a general hyperstability results for the following k-cubic functional equations fkx+y+fkx−y=kfx+y+kfx−y+2kk2−1fx, where k is a fixed positive integer ≥2, in ultrametric Banach spaces.
format Article
id doaj-art-7fb00be4ed2a4ba1866e16af60cf59ae
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-7fb00be4ed2a4ba1866e16af60cf59ae2025-08-20T03:35:20ZengWileyJournal of Mathematics2314-46292314-47852020-01-01202010.1155/2020/88434648843464Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach SpacesYoussef Aribou0Mohamed Rossafi1Laayoune Higher School of Technology, Ibn Zohr University, BP 3007 Laayoune, MoroccoDepartment of Mathematics, University of Ibn Tofail, BP 133 Kenitra, MoroccoUsing the fixed point approach, we investigate a general hyperstability results for the following k-cubic functional equations fkx+y+fkx−y=kfx+y+kfx−y+2kk2−1fx, where k is a fixed positive integer ≥2, in ultrametric Banach spaces.http://dx.doi.org/10.1155/2020/8843464
spellingShingle Youssef Aribou
Mohamed Rossafi
Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach Spaces
Journal of Mathematics
title Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach Spaces
title_full Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach Spaces
title_fullStr Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach Spaces
title_full_unstemmed Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach Spaces
title_short Hyperstability of the k-Cubic Functional Equation in Non-Archimedean Banach Spaces
title_sort hyperstability of the k cubic functional equation in non archimedean banach spaces
url http://dx.doi.org/10.1155/2020/8843464
work_keys_str_mv AT youssefaribou hyperstabilityofthekcubicfunctionalequationinnonarchimedeanbanachspaces
AT mohamedrossafi hyperstabilityofthekcubicfunctionalequationinnonarchimedeanbanachspaces