How to predict effective drug combinations – moving beyond synergy scores

Summary: To improve our understanding of multi-drug therapies, cancer cell line panels screened with drug combinations are frequently studied using machine learning (ML). ML models trained on such data typically focus on predicting synergy scores that support drug development and repurposing efforts...

Full description

Saved in:
Bibliographic Details
Main Authors: Lea Eckhart, Kerstin Lenhof, Lutz Herrmann, Lisa-Marie Rolli, Hans-Peter Lenhof
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004225008831
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: To improve our understanding of multi-drug therapies, cancer cell line panels screened with drug combinations are frequently studied using machine learning (ML). ML models trained on such data typically focus on predicting synergy scores that support drug development and repurposing efforts but have limitations when deriving personalized treatment recommendations. To simulate a more realistic personalized treatment scenario, we pioneer ML models that make dose-specific predictions of the relative growth inhibition (instead of synergy scores), and that can be applied to previously unseen cell lines. Our approach is highly flexible: it enables the reconstruction of dose-response curves and matrices, as well as various measures of drug sensitivity (and synergy) from model predictions, which can finally even be used to derive cell line-specific prioritizations of both mono- and combination therapies.
ISSN:2589-0042