Local Scour Around Marine Structures: A Comprehensive Review of Influencing Factors, Prediction Methods, and Future Directions

Local scour is a phenomenon of sediment erosion and transport caused by the dynamic interaction between water flow and seabed sediment, posing a serious threat to the safety of marine engineering structures such as cross-sea bridges and offshore wind turbines. To improve scour prediction and prevent...

Full description

Saved in:
Bibliographic Details
Main Authors: Bingchuan Duan, Duoyin Wang, Chenxi Qin, Lunliang Duan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/12/2125
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Local scour is a phenomenon of sediment erosion and transport caused by the dynamic interaction between water flow and seabed sediment, posing a serious threat to the safety of marine engineering structures such as cross-sea bridges and offshore wind turbines. To improve scour prediction and prevention capabilities, this review systematically analyzes the influence mechanisms of factors such as hydrodynamic conditions, sediment characteristics, and structural geometry, and discusses scour protection measures. Based on this, a comprehensive evaluation of the applicability of different prediction methods, including traditional empirical formulas, numerical simulations, probabilistic prediction models, and machine learning (ML) methods, was conducted. The study focuses on analyzing the limitations of existing methods: empirical formulas lack adaptability under complex field conditions, numerical simulation still faces challenges in validating real marine environments, and data-driven models suffer from “black box” issues and insufficient generalization capabilities. Based on the current research progress, this review presents prospects for future development, emphasizing the need to deepen the study of scouring mechanisms in complex real marine environments, develop efficient numerical models for engineering applications, and explore intelligent prediction methods that integrate data-driven approaches with physical mechanisms. This aims to provide more reliable theoretical support for the safe design, risk prevention, and scouring mitigation measures in marine engineering.
ISSN:2075-5309