Acute Hypoxic Stress Affects Migration Machinery of Tissue O2-Adapted Adipose Stromal Cells

The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4–7%. However, most in vitro st...

Full description

Saved in:
Bibliographic Details
Main Authors: Olga O. Udartseva, Margarita V. Lobanova, Elena R. Andreeva, Sergey V. Buravkov, Irina V. Ogneva, Ludmila B. Buravkova
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Stem Cells International
Online Access:http://dx.doi.org/10.1155/2016/7260562
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4–7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury.
ISSN:1687-966X
1687-9678