A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers

<b>Background</b>: Artificial intelligence tools can help improve the clinical management of patients with severe COVID-19. The aim of this study was to validate a machine learning model to predict admission to the Intensive Care Unit (ICU) in individuals with COVID-19. <b>Methods&...

Full description

Saved in:
Bibliographic Details
Main Authors: Alfonso Heriberto Hernández-Monsalves, Pablo Letelier, Camilo Morales, Eduardo Rojas, Mauricio Alejandro Saez, Nicolás Coña, Javiera Díaz, Andrés San Martín, Paola Garcés, Jesús Espinal-Enriquez, Neftalí Guzmán
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/13/5/1025
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849327393935720448
author Alfonso Heriberto Hernández-Monsalves
Pablo Letelier
Camilo Morales
Eduardo Rojas
Mauricio Alejandro Saez
Nicolás Coña
Javiera Díaz
Andrés San Martín
Paola Garcés
Jesús Espinal-Enriquez
Neftalí Guzmán
author_facet Alfonso Heriberto Hernández-Monsalves
Pablo Letelier
Camilo Morales
Eduardo Rojas
Mauricio Alejandro Saez
Nicolás Coña
Javiera Díaz
Andrés San Martín
Paola Garcés
Jesús Espinal-Enriquez
Neftalí Guzmán
author_sort Alfonso Heriberto Hernández-Monsalves
collection DOAJ
description <b>Background</b>: Artificial intelligence tools can help improve the clinical management of patients with severe COVID-19. The aim of this study was to validate a machine learning model to predict admission to the Intensive Care Unit (ICU) in individuals with COVID-19. <b>Methods</b>: A total of 201 hospitalized patients with COVID-19 were included. Sociodemographic and clinical data as well as laboratory biomarker results were obtained from medical records and the clinical laboratory information system. Three machine learning models were generated, trained, and internally validated: logistic regression (LR), random forest (RF), and extreme gradient boosting (XGBoost). The models were evaluated for sensitivity (Sn), specificity (Sp), area under the curve (AUC), precision (P), SHapley Additive exPlanation (SHAP) values, and the clinical utility of predictive models using decision curve analysis (DCA). <b>Results</b>: The predictive model included the following variables: type 2 diabetes mellitus (T2DM), obesity, absolute neutrophil and basophil counts, the neutrophil-to-lymphocyte ratio (NLR), and D-dimer levels on the day of hospital admission. LR showed an Sn of 0.67, Sp of 0.65, AUC of 0.74, and P of 0.66. RF achieved an Sn of 0.87, Sp of 0.83, AUC of 0.96, and P of 0.85. XGBoost demonstrated an Sn of 0.87, Sp of 0.85, AUC of 0.95, and P of 0.86. <b>Conclusions</b>: Among the evaluated models, XGBoost showed robust predictive performance (Sn = 0.87, Sp = 0.85, AUC = 0.95, P = 0.86) and a favorable net clinical benefit in the decision curve analysis, confirming its suitability for predicting ICU admission in COVID-19 and aiding clinical decision-making.
format Article
id doaj-art-7f23010c9d024b84b83bc95c17bbf8ae
institution Kabale University
issn 2227-9059
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Biomedicines
spelling doaj-art-7f23010c9d024b84b83bc95c17bbf8ae2025-08-20T03:47:53ZengMDPI AGBiomedicines2227-90592025-04-01135102510.3390/biomedicines13051025A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory BiomarkersAlfonso Heriberto Hernández-Monsalves0Pablo Letelier1Camilo Morales2Eduardo Rojas3Mauricio Alejandro Saez4Nicolás Coña5Javiera Díaz6Andrés San Martín7Paola Garcés8Jesús Espinal-Enriquez9Neftalí Guzmán10Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, ChileLaboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, ChileDepartamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, ChileLaboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, ChileLaboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, ChileLaboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, ChileLaboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, ChileLaboratorio Clínico, Hospital Dr. Hernán Henríquez Aravena, Temuco 4780000, ChileCentro Médico AlergoInmuno Araucanía, Temuco 4780000, ChileComputational Genomics Department, National Institute of Genomic Medicine, Mexico City 14610, MexicoLaboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile<b>Background</b>: Artificial intelligence tools can help improve the clinical management of patients with severe COVID-19. The aim of this study was to validate a machine learning model to predict admission to the Intensive Care Unit (ICU) in individuals with COVID-19. <b>Methods</b>: A total of 201 hospitalized patients with COVID-19 were included. Sociodemographic and clinical data as well as laboratory biomarker results were obtained from medical records and the clinical laboratory information system. Three machine learning models were generated, trained, and internally validated: logistic regression (LR), random forest (RF), and extreme gradient boosting (XGBoost). The models were evaluated for sensitivity (Sn), specificity (Sp), area under the curve (AUC), precision (P), SHapley Additive exPlanation (SHAP) values, and the clinical utility of predictive models using decision curve analysis (DCA). <b>Results</b>: The predictive model included the following variables: type 2 diabetes mellitus (T2DM), obesity, absolute neutrophil and basophil counts, the neutrophil-to-lymphocyte ratio (NLR), and D-dimer levels on the day of hospital admission. LR showed an Sn of 0.67, Sp of 0.65, AUC of 0.74, and P of 0.66. RF achieved an Sn of 0.87, Sp of 0.83, AUC of 0.96, and P of 0.85. XGBoost demonstrated an Sn of 0.87, Sp of 0.85, AUC of 0.95, and P of 0.86. <b>Conclusions</b>: Among the evaluated models, XGBoost showed robust predictive performance (Sn = 0.87, Sp = 0.85, AUC = 0.95, P = 0.86) and a favorable net clinical benefit in the decision curve analysis, confirming its suitability for predicting ICU admission in COVID-19 and aiding clinical decision-making.https://www.mdpi.com/2227-9059/13/5/1025COVID-19SARS-CoV-2biomarkersmachine learningprecision medicinepersonalized medicine
spellingShingle Alfonso Heriberto Hernández-Monsalves
Pablo Letelier
Camilo Morales
Eduardo Rojas
Mauricio Alejandro Saez
Nicolás Coña
Javiera Díaz
Andrés San Martín
Paola Garcés
Jesús Espinal-Enriquez
Neftalí Guzmán
A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers
Biomedicines
COVID-19
SARS-CoV-2
biomarkers
machine learning
precision medicine
personalized medicine
title A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers
title_full A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers
title_fullStr A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers
title_full_unstemmed A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers
title_short A Machine Learning Model for Predicting Intensive Care Unit Admission in Inpatients with COVID-19 Using Clinical Data and Laboratory Biomarkers
title_sort machine learning model for predicting intensive care unit admission in inpatients with covid 19 using clinical data and laboratory biomarkers
topic COVID-19
SARS-CoV-2
biomarkers
machine learning
precision medicine
personalized medicine
url https://www.mdpi.com/2227-9059/13/5/1025
work_keys_str_mv AT alfonsoheribertohernandezmonsalves amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT pabloletelier amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT camilomorales amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT eduardorojas amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT mauricioalejandrosaez amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT nicolascona amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT javieradiaz amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT andressanmartin amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT paolagarces amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT jesusespinalenriquez amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT neftaliguzman amachinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT alfonsoheribertohernandezmonsalves machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT pabloletelier machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT camilomorales machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT eduardorojas machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT mauricioalejandrosaez machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT nicolascona machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT javieradiaz machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT andressanmartin machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT paolagarces machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT jesusespinalenriquez machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers
AT neftaliguzman machinelearningmodelforpredictingintensivecareunitadmissionininpatientswithcovid19usingclinicaldataandlaboratorybiomarkers