Seismic Reliability Analysis of Highway Pile–Plate Structures Considering Dual Stochasticity of Parameters and Excitation via Probability Density Evolution

The paper innovatively studies the impact of dual randomness of structural parameters and seismic excitation on the seismic reliability of highway pile–slab structures using the probability density evolution method. A nonlinear stochastic dynamic model was established through the platform, integrati...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Huang, Ge Li, Chaowei Du, Yujian Guan, Shizhan Xu, Shuaitao Li
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Infrastructures
Subjects:
Online Access:https://www.mdpi.com/2412-3811/10/6/131
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper innovatively studies the impact of dual randomness of structural parameters and seismic excitation on the seismic reliability of highway pile–slab structures using the probability density evolution method. A nonlinear stochastic dynamic model was established through the platform, integrating, for the first time, the randomness of concrete material properties and seismic motion variability. The main findings include the following: Under deterministic seismic input, the displacement angle fluctuation range caused by structural parameter randomness is ±3%, and reliability decreases from 100% to 65.26%. For seismic excitation randomness, compared to structural parameter randomness, reliability at the 3.3% threshold decreases by 7.99%, reaching 92.01%. Dual randomness amplifies the variability of structural response, reducing reliability to 86.38% and 62%, with a maximum difference of 20.5% compared to single-factor scenarios. Compared to the Monte Carlo method, probability density evolution shows significant advantages in computational accuracy and efficiency for large-scale systems, revealing enhanced discreteness and irregularity under combined randomness. This study emphasizes the necessity of addressing dual randomness in seismic design, advancing probabilistic seismic assessment methods for complex engineering systems, thereby aiding the design phase in enhancing facility safety and providing scientific basis for improved design specifications.
ISSN:2412-3811