Deformations of Theta Integrals and A Conjecture of Gross-Zagier

In this paper, we complete the proof of the conjecture of Gross and Zagier concerning algebraicity of higher Green functions at a single CM point on the product of modular curves. The new ingredient is an analogue of the incoherent Eisenstein series over a real quadratic field, which is constructed...

Full description

Saved in:
Bibliographic Details
Main Authors: Jan H. Bruinier, Yingkun Li, Tonghai Yang
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001397/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850036559743549440
author Jan H. Bruinier
Yingkun Li
Tonghai Yang
author_facet Jan H. Bruinier
Yingkun Li
Tonghai Yang
author_sort Jan H. Bruinier
collection DOAJ
description In this paper, we complete the proof of the conjecture of Gross and Zagier concerning algebraicity of higher Green functions at a single CM point on the product of modular curves. The new ingredient is an analogue of the incoherent Eisenstein series over a real quadratic field, which is constructed as the Doi-Naganuma theta lift of a deformed theta integral on hyperbolic 1-space.
format Article
id doaj-art-7f1415d11b344c2a8ee4be5211d5ca2c
institution DOAJ
issn 2050-5094
language English
publishDate 2025-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj-art-7f1415d11b344c2a8ee4be5211d5ca2c2025-08-20T02:57:07ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2024.139Deformations of Theta Integrals and A Conjecture of Gross-ZagierJan H. Bruinier0https://orcid.org/0000-0002-1653-8230Yingkun Li1https://orcid.org/0000-0002-3974-1389Tonghai Yang2Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, Darmstadt, D–64289, Germany; E-mail:Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn, D–53111, Germany; E-mail:Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Dr., Madison, WI 53706, USA;In this paper, we complete the proof of the conjecture of Gross and Zagier concerning algebraicity of higher Green functions at a single CM point on the product of modular curves. The new ingredient is an analogue of the incoherent Eisenstein series over a real quadratic field, which is constructed as the Doi-Naganuma theta lift of a deformed theta integral on hyperbolic 1-space.https://www.cambridge.org/core/product/identifier/S2050509424001397/type/journal_article11F3711F4111G15
spellingShingle Jan H. Bruinier
Yingkun Li
Tonghai Yang
Deformations of Theta Integrals and A Conjecture of Gross-Zagier
Forum of Mathematics, Sigma
11F37
11F41
11G15
title Deformations of Theta Integrals and A Conjecture of Gross-Zagier
title_full Deformations of Theta Integrals and A Conjecture of Gross-Zagier
title_fullStr Deformations of Theta Integrals and A Conjecture of Gross-Zagier
title_full_unstemmed Deformations of Theta Integrals and A Conjecture of Gross-Zagier
title_short Deformations of Theta Integrals and A Conjecture of Gross-Zagier
title_sort deformations of theta integrals and a conjecture of gross zagier
topic 11F37
11F41
11G15
url https://www.cambridge.org/core/product/identifier/S2050509424001397/type/journal_article
work_keys_str_mv AT janhbruinier deformationsofthetaintegralsandaconjectureofgrosszagier
AT yingkunli deformationsofthetaintegralsandaconjectureofgrosszagier
AT tonghaiyang deformationsofthetaintegralsandaconjectureofgrosszagier