Machine-learning potentials for structurally and chemically complex MAB phases: Strain hardening and ripplocation-mediated plasticity
Though offering unprecedented pathways to molecular dynamics (MD) simulations of technologically-relevant materials and conditions, machine-learning interatomic potentials (MLIPs) are typically trained for “simple” materials and properties with minor size effects. Our study of MAB phases (MABs)—alte...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-08-01
|
| Series: | Materials & Design |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S0264127525007270 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Though offering unprecedented pathways to molecular dynamics (MD) simulations of technologically-relevant materials and conditions, machine-learning interatomic potentials (MLIPs) are typically trained for “simple” materials and properties with minor size effects. Our study of MAB phases (MABs)—alternating transition metal boride (MB) and group A element layers—exemplifies that MLIPs for complex materials can be fitted and used in a high-throughput fashion: for predicting structural and mechanical properties across a large chemical/phase/temperature space. Considering group 4–6 transition metal based MABs, with A=Al and the 222, 212, and 314 type phases, three MLIPs are trained and tested, including lattice and elastic constants calculations at temperatures T∈{0,300,1200} K, extrapolation grade and energy (force, stress) error analysis for ≈3⋅106 ab initio MD snapshots. Subsequently, nanoscale tensile tests serve to quantify upper limits of strength and toughness attainable in single-crystal MABs at 300 K as well as their temperature evolution. In-plane tensile deformation is characterised by relatively high strength, {110}〈001〉 type slipping, and failure by shear banding. The response to [001] loading is softer, triggers work hardening, and failure by kinking and layer delamination. Furthermore, W2AlB2 able to retard fracture via ripplocations and twinning from 300 up to 1200 K. |
|---|---|
| ISSN: | 0264-1275 |