Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO

Gas turbine (GT) modeling and optimization have been widely studied at the design level but still lacks focus on real-world operational cases. The concept of a digital twin (DT) allows for the interaction between operation data and the system dynamic performance. Among many DT studies, only a few fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Jian Tiong Lim, Achnaf Habibullah, Eddie Yin Kwee Ng
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/14/3721
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246330304593920
author Jian Tiong Lim
Achnaf Habibullah
Eddie Yin Kwee Ng
author_facet Jian Tiong Lim
Achnaf Habibullah
Eddie Yin Kwee Ng
author_sort Jian Tiong Lim
collection DOAJ
description Gas turbine (GT) modeling and optimization have been widely studied at the design level but still lacks focus on real-world operational cases. The concept of a digital twin (DT) allows for the interaction between operation data and the system dynamic performance. Among many DT studies, only a few focus on GT for thermal power plants. This study proposes a digital twin prototype framework including the following modules: process modeling, parameter estimation, and performance optimization. Provided with real-world power plant operational data, key performance parameters such as turbine inlet temperature (TIT) and specific fuel consumption (SFC) were initially unavailable, therefore necessitating further calculation using thermodynamic analysis. These parameters are then used as a target label for developing artificial neural networks (ANNs). Three ANN models with different structures are developed to predict TIT, SFC, and turbine power output (GTPO), achieving high <i>R</i><sup>2</sup> scores of 94.03%, 82.27%, and 97.59%, respectively. Physics-informed neural networks (PINNs) are then employed to estimate the values of the air–fuel ratio and combustion efficiency for each time index. The PINN-based estimation resulted in estimated values that align with the literature. Subsequently, an unconventional method of detecting alarms by using conformal prediction were also proposed, resulting in a significantly reduced number of alarms. The developed ANNs are then combined with particle swarm optimization (PSO) to carry out performance optimization in real time. GTPO and SFC are selected as the primary metrics for the optimization, with controllable parameters such as AFR and a fine-tuned inlet guide vane position. The results demonstrated that GTPO could be optimized with the application of conformal prediction when the true GTPO is detected to be higher than the upper range of GTPO obtained from the ANN model with a conformal prediction of a 95% confidence level. Multiple PSO variants were also compared and benchmarked to ensure an enhanced performance. The proposed PSO in this study has a lower mean loss compared to GEP. Furthermore, PSO has a lower computational cost compared to RS for hyperparameter tuning, as shown in this study. Ultimately, the proposed methods aim to enhance GT operations via a data-driven digital twin concept combination of deep learning and optimization algorithms.
format Article
id doaj-art-7ecd6071c092449e89ed9a18e770a3e5
institution Kabale University
issn 1996-1073
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-7ecd6071c092449e89ed9a18e770a3e52025-08-20T03:58:31ZengMDPI AGEnergies1996-10732025-07-011814372110.3390/en18143721Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSOJian Tiong Lim0Achnaf Habibullah1Eddie Yin Kwee Ng2School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3, Singapore 639798, SingaporeSchool of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3, Singapore 639798, SingaporeSchool of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3, Singapore 639798, SingaporeGas turbine (GT) modeling and optimization have been widely studied at the design level but still lacks focus on real-world operational cases. The concept of a digital twin (DT) allows for the interaction between operation data and the system dynamic performance. Among many DT studies, only a few focus on GT for thermal power plants. This study proposes a digital twin prototype framework including the following modules: process modeling, parameter estimation, and performance optimization. Provided with real-world power plant operational data, key performance parameters such as turbine inlet temperature (TIT) and specific fuel consumption (SFC) were initially unavailable, therefore necessitating further calculation using thermodynamic analysis. These parameters are then used as a target label for developing artificial neural networks (ANNs). Three ANN models with different structures are developed to predict TIT, SFC, and turbine power output (GTPO), achieving high <i>R</i><sup>2</sup> scores of 94.03%, 82.27%, and 97.59%, respectively. Physics-informed neural networks (PINNs) are then employed to estimate the values of the air–fuel ratio and combustion efficiency for each time index. The PINN-based estimation resulted in estimated values that align with the literature. Subsequently, an unconventional method of detecting alarms by using conformal prediction were also proposed, resulting in a significantly reduced number of alarms. The developed ANNs are then combined with particle swarm optimization (PSO) to carry out performance optimization in real time. GTPO and SFC are selected as the primary metrics for the optimization, with controllable parameters such as AFR and a fine-tuned inlet guide vane position. The results demonstrated that GTPO could be optimized with the application of conformal prediction when the true GTPO is detected to be higher than the upper range of GTPO obtained from the ANN model with a conformal prediction of a 95% confidence level. Multiple PSO variants were also compared and benchmarked to ensure an enhanced performance. The proposed PSO in this study has a lower mean loss compared to GEP. Furthermore, PSO has a lower computational cost compared to RS for hyperparameter tuning, as shown in this study. Ultimately, the proposed methods aim to enhance GT operations via a data-driven digital twin concept combination of deep learning and optimization algorithms.https://www.mdpi.com/1996-1073/18/14/3721gas turbine operationsdigital twinthermodynamicsartificial neural networksphysics-informed neural networksparticle swarm optimization
spellingShingle Jian Tiong Lim
Achnaf Habibullah
Eddie Yin Kwee Ng
Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
Energies
gas turbine operations
digital twin
thermodynamics
artificial neural networks
physics-informed neural networks
particle swarm optimization
title Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
title_full Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
title_fullStr Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
title_full_unstemmed Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
title_short Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
title_sort towards a digital twin for gas turbines thermodynamic modeling critical parameter estimation and performance optimization using pinn and pso
topic gas turbine operations
digital twin
thermodynamics
artificial neural networks
physics-informed neural networks
particle swarm optimization
url https://www.mdpi.com/1996-1073/18/14/3721
work_keys_str_mv AT jiantionglim towardsadigitaltwinforgasturbinesthermodynamicmodelingcriticalparameterestimationandperformanceoptimizationusingpinnandpso
AT achnafhabibullah towardsadigitaltwinforgasturbinesthermodynamicmodelingcriticalparameterestimationandperformanceoptimizationusingpinnandpso
AT eddieyinkweeng towardsadigitaltwinforgasturbinesthermodynamicmodelingcriticalparameterestimationandperformanceoptimizationusingpinnandpso