Motor imagery decoding network with multisubject dynamic transfer
Abstract Brain computer interface (BCI) provides a promising and intelligent rehabilitation method for motor function, and it is crucial to acquire the patient’s movement intentions accurately through decoding motor imagery EEG (MI-EEG) . Because of the inter-individual heterogeneity, the decoding m...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-08-01
|
| Series: | Brain Informatics |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s40708-025-00267-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Brain computer interface (BCI) provides a promising and intelligent rehabilitation method for motor function, and it is crucial to acquire the patient’s movement intentions accurately through decoding motor imagery EEG (MI-EEG) . Because of the inter-individual heterogeneity, the decoding model should demonstrate dynamic adaptation abilities.Domain adaptation (DA) is effective to enhance model generalization by reducing the inherent distribution difference among subjects. However, the existing DA methods usually mix the multiple source domains into a new domain, the resulting multi-source domain conflict may cause negative transfer. In this paper, we propose a multi-source dynamic conditional domain adaptation network (MSDCDA). First, a multi-channel attention block is employed in the feature extractor to focus on the channels relevant to the corresponding MI task. Subsequently, the shallow spatial-temporal features are extracted using a spatial-temporal convolution block. And a dynamic residual block is applied in the feature extractor to dynamically adapt specific features of each subject to alleviate conflicts among multiple source domains since each domain is viewed as a distribution of electroencephalogram (EEG) signals. Furthermore, we employ the Margin Disparity Discrepancy (MDD) as the metric to achieve conditional distribution domain adaptation between the source and target domains through adversarial learning with an auxiliary classifier. MSDCDA achieved accuracies of 78.55 $$\%$$ % and 85.08 $$\%$$ % on Datasets IIa and IIb of BCI Competition IV, respectively. Our experimental results demonstrate that MSDCDA can effectively address multi-source domain conflicts and significantly enhance the decoding performance of target subjects. This study positively facilitates the application of BCI based on motor function rehabilitation. |
|---|---|
| ISSN: | 2198-4018 2198-4026 |