CPSF6 defines a conserved capsid interface that modulates HIV-1 replication.

The HIV-1 genome enters cells inside a shell comprised of capsid (CA) protein. Variation in CA sequence alters HIV-1 infectivity and escape from host restriction factors. However, apart from the Cyclophilin A-binding loop, CA has no known interfaces with which to interact with cellular cofactors. He...

Full description

Saved in:
Bibliographic Details
Main Authors: Amanda J Price, Adam J Fletcher, Torsten Schaller, Tom Elliott, KyeongEun Lee, Vineet N KewalRamani, Jason W Chin, Greg J Towers, Leo C James
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS Pathogens
Online Access:https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1002896&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The HIV-1 genome enters cells inside a shell comprised of capsid (CA) protein. Variation in CA sequence alters HIV-1 infectivity and escape from host restriction factors. However, apart from the Cyclophilin A-binding loop, CA has no known interfaces with which to interact with cellular cofactors. Here we describe a novel protein-protein interface in the N-terminal domain of HIV-1 CA, determined by X-ray crystallography, which mediates both viral restriction and host cofactor dependence. The interface is highly conserved across lentiviruses and is accessible in the context of a hexameric lattice. Mutation of the interface prevents binding to and restriction by CPSF6-358, a truncated cytosolic form of the RNA processing factor, cleavage and polyadenylation specific factor 6 (CPSF6). Furthermore, mutations that prevent CPSF6 binding also relieve dependence on nuclear entry cofactors TNPO3 and RanBP2. These results suggest that the HIV-1 capsid mediates direct host cofactor interactions to facilitate viral infection.
ISSN:1553-7366
1553-7374