Functional equation of a special Dirichlet series

In this paper we study the special Dirichlet series L(s)=23∑n=1∞sin(2πn3)n−s,  s∈C This series converges uniformly in the half-plane Re(s)>1 and thus represents a holomorphic function there. We show that the function L can be extended to a holomorphic function in the whole complex-plane. The valu...

Full description

Saved in:
Bibliographic Details
Main Author: Ibrahim A. Abou-Tair
Format: Article
Language:English
Published: Wiley 1987-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171287000462
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849409216490504192
author Ibrahim A. Abou-Tair
author_facet Ibrahim A. Abou-Tair
author_sort Ibrahim A. Abou-Tair
collection DOAJ
description In this paper we study the special Dirichlet series L(s)=23∑n=1∞sin(2πn3)n−s,  s∈C This series converges uniformly in the half-plane Re(s)>1 and thus represents a holomorphic function there. We show that the function L can be extended to a holomorphic function in the whole complex-plane. The values of the function L at the points 0,±1,−2,±3,−4,±5,… are obtained. The values at the positive integers 1,3,5,… are determined by means of a functional equation satisfied by L.
format Article
id doaj-art-7e56b0b0cd3e4c98bb6ea20ea7ce4791
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1987-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-7e56b0b0cd3e4c98bb6ea20ea7ce47912025-08-20T03:35:34ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251987-01-0110239540310.1155/S0161171287000462Functional equation of a special Dirichlet seriesIbrahim A. Abou-Tair0Department of Mathematics, Islamic University Gaza, Gaza- Strip, Palestinian AuthorityIn this paper we study the special Dirichlet series L(s)=23∑n=1∞sin(2πn3)n−s,  s∈C This series converges uniformly in the half-plane Re(s)>1 and thus represents a holomorphic function there. We show that the function L can be extended to a holomorphic function in the whole complex-plane. The values of the function L at the points 0,±1,−2,±3,−4,±5,… are obtained. The values at the positive integers 1,3,5,… are determined by means of a functional equation satisfied by L.http://dx.doi.org/10.1155/S0161171287000462Dirichlet seriesanalytic continuationfunctional equationΓ-function.
spellingShingle Ibrahim A. Abou-Tair
Functional equation of a special Dirichlet series
International Journal of Mathematics and Mathematical Sciences
Dirichlet series
analytic continuation
functional equation
Γ-function.
title Functional equation of a special Dirichlet series
title_full Functional equation of a special Dirichlet series
title_fullStr Functional equation of a special Dirichlet series
title_full_unstemmed Functional equation of a special Dirichlet series
title_short Functional equation of a special Dirichlet series
title_sort functional equation of a special dirichlet series
topic Dirichlet series
analytic continuation
functional equation
Γ-function.
url http://dx.doi.org/10.1155/S0161171287000462
work_keys_str_mv AT ibrahimaaboutair functionalequationofaspecialdirichletseries