A highly efficient hybrid fiber optic laser using a cesium atom vapor cell as an optical gain medium
Abstract A new scheme of a highly efficient hybrid laser cavity is proposed and experimentally demonstrated utilizing a hot cesium (Cs) vapor cell as an optical gain medium. The laser cavity consists of a macroscopic concave reflector (> 99% reflectivity) and a 4% Fresnel-reflecting facet of a si...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-90442-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract A new scheme of a highly efficient hybrid laser cavity is proposed and experimentally demonstrated utilizing a hot cesium (Cs) vapor cell as an optical gain medium. The laser cavity consists of a macroscopic concave reflector (> 99% reflectivity) and a 4% Fresnel-reflecting facet of a single mode fiber (SMF). The cesium gain cell is located between these two reflectors. The SMF serves multiple roles: (1) a passive mode-matching component to approximate the pump beam diameter to that of the laser cavity mode within the cesium cell, (2) an output coupler with a low reflectivity, and (3) a low loss laser delivery with a high beam-quality. Optimizing the pump beam waist diameter and the cesium vapor cell temperature, a high slope efficiency of 86% and an optical-to-optical conversion efficiency of 71% were achieved in the pump power range of 400–600 mW. The unique multi-functional role of the SMF in the hybrid cavity is fully described, which can also be applied to other high optical gain media. |
|---|---|
| ISSN: | 2045-2322 |