Advances in the Application of Intelligent Algorithms to the Optimization and Control of Hydrodynamic Noise: Improve Energy Efficiency and System Optimization

Hydrodynamic noise is induced by hydrodynamic phenomena, such as pressure fluctuations, shear layers, and eddy currents, which have a significant impact on ship performance, pumping equipment efficiency, detection accuracy, and the living environment of marine organisms. Specifically, hydrodynamic n...

Full description

Saved in:
Bibliographic Details
Main Authors: Maosen Xu, Bokai Fan, Renyong Lin, Rong Lin, Xian Wu, Shuihua Zheng, Yunqing Gu, Jiegang Mou
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/4/2084
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrodynamic noise is induced by hydrodynamic phenomena, such as pressure fluctuations, shear layers, and eddy currents, which have a significant impact on ship performance, pumping equipment efficiency, detection accuracy, and the living environment of marine organisms. Specifically, hydrodynamic noise increases fluid resistance around the hull, reduces speed and fuel efficiency, and affects the stealthiness of military vessels; whereas, in pumping equipment, noise generation is usually accompanied by energy loss and mechanical vibration, resulting in reduced efficiency and accelerated wear and tear of the equipment. Traditional physical experiments, theoretical modeling, and numerical simulation methods occupy a key position in hydrodynamic noise research, but each have their own limitations: physical experiments are limited by experimental conditions, which make it difficult to comprehensively reproduce the characteristics of the complex flow field; theoretical modeling appears to be simplified and idealized to cope with the multiscale noise mechanism; and numerical simulation methods, although accurate, are deficient in the sense that they are computationally expensive and difficult to adapt to complex boundary conditions. In recent years, intelligent algorithms represented by data-driven algorithms and heuristic algorithms have gradually emerged, showing great potential for development in hydrodynamic noise optimization applications. To this end, this paper systematically reviews progress in the application of intelligent algorithms in hydrodynamic noise research, focusing on their advantages in the optimal design of noise sources, noise prediction, and control strategy optimization. Meanwhile, this paper analyzes the problems of data scarcity, computational efficiency, and model interpretability faced in the current research, and looks forward to the possible improvements brought by hybrid methods, including physical information neural networks, in future research directions. It is hoped that this review can provide useful references for theoretical research and practical engineering applications involving hydrodynamic noise, and point the way toward further exploration in related fields.
ISSN:2076-3417