A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species

Urbanization poses significant challenges to ecosystems, resources, and human well-being, necessitating sustainable planning. Urban vegetation, particularly trees, provides critical ecosystem services such as carbon sequestration, air quality improvement, and biodiversity conservation. Traditional t...

Full description

Saved in:
Bibliographic Details
Main Authors: Fabio Recanatesi, Antonietta De Santis, Lorenzo Gatti, Alessio Patriarca, Eros Caputi, Giulia Mancini, Chiara Iavarone, Carlo Maria Rossi, Gabriele Delogu, Miriam Perretta, Lorenzo Boccia, Maria Nicolina Ripa
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/1/106
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588140967100416
author Fabio Recanatesi
Antonietta De Santis
Lorenzo Gatti
Alessio Patriarca
Eros Caputi
Giulia Mancini
Chiara Iavarone
Carlo Maria Rossi
Gabriele Delogu
Miriam Perretta
Lorenzo Boccia
Maria Nicolina Ripa
author_facet Fabio Recanatesi
Antonietta De Santis
Lorenzo Gatti
Alessio Patriarca
Eros Caputi
Giulia Mancini
Chiara Iavarone
Carlo Maria Rossi
Gabriele Delogu
Miriam Perretta
Lorenzo Boccia
Maria Nicolina Ripa
author_sort Fabio Recanatesi
collection DOAJ
description Urbanization poses significant challenges to ecosystems, resources, and human well-being, necessitating sustainable planning. Urban vegetation, particularly trees, provides critical ecosystem services such as carbon sequestration, air quality improvement, and biodiversity conservation. Traditional tree assessments are resource-intensive and time-consuming. Recent advances in remote sensing, especially high-resolution multispectral imagery and object-based image analysis (OBIA), offer efficient alternatives for mapping urban vegetation. This study evaluates and compares the efficacy of Sentinel-2 and Pléiades satellite imagery in classifying tree species within historic urban parks in Rome—Villa Borghese, Villa Ada Savoia, and Villa Doria Pamphilj. Pléiades imagery demonstrated superior classification accuracy, achieving an overall accuracy (OA) of 89% and a Kappa index of 0.84 in Villa Ada Savoia, compared to Sentinel-2’s OA of 66% and Kappa index of 0.47. Specific tree species, such as Pinus pinea (Stone Pine), reached a user accuracy (UA) of 84% with Pléiades versus 53% with Sentinel-2. These insights underscore the potential of integrating high-resolution remote sensing data into urban forestry practices to support sustainable urban management and planning.
format Article
id doaj-art-7df4a471695a4d1195ab62a25ffc8c8f
institution Kabale University
issn 2073-445X
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Land
spelling doaj-art-7df4a471695a4d1195ab62a25ffc8c8f2025-01-24T13:37:55ZengMDPI AGLand2073-445X2025-01-0114110610.3390/land14010106A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree SpeciesFabio Recanatesi0Antonietta De Santis1Lorenzo Gatti2Alessio Patriarca3Eros Caputi4Giulia Mancini5Chiara Iavarone6Carlo Maria Rossi7Gabriele Delogu8Miriam Perretta9Lorenzo Boccia10Maria Nicolina Ripa11Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 8, 01100 Viterbo, ItalyDepartment of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 8, 01100 Viterbo, ItalyDepartment of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 8, 01100 Viterbo, ItalyDepartment of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 8, 01100 Viterbo, ItalyDepartment of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Via 6 del Paradiso, 47, 01100 Viterbo, ItalyDepartment of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 8, 01100 Viterbo, ItalyDepartment of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Via 6 del Paradiso, 47, 01100 Viterbo, ItalyDepartment of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 8, 01100 Viterbo, ItalyDepartment of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Via 6 del Paradiso, 47, 01100 Viterbo, ItalyDepartment of Architecture, University of Naples Federico II, Via Forno Vecchio, 36, 80134 Naples, ItalyDepartment of Architecture, University of Naples Federico II, Via Forno Vecchio, 36, 80134 Naples, ItalyDepartment of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 8, 01100 Viterbo, ItalyUrbanization poses significant challenges to ecosystems, resources, and human well-being, necessitating sustainable planning. Urban vegetation, particularly trees, provides critical ecosystem services such as carbon sequestration, air quality improvement, and biodiversity conservation. Traditional tree assessments are resource-intensive and time-consuming. Recent advances in remote sensing, especially high-resolution multispectral imagery and object-based image analysis (OBIA), offer efficient alternatives for mapping urban vegetation. This study evaluates and compares the efficacy of Sentinel-2 and Pléiades satellite imagery in classifying tree species within historic urban parks in Rome—Villa Borghese, Villa Ada Savoia, and Villa Doria Pamphilj. Pléiades imagery demonstrated superior classification accuracy, achieving an overall accuracy (OA) of 89% and a Kappa index of 0.84 in Villa Ada Savoia, compared to Sentinel-2’s OA of 66% and Kappa index of 0.47. Specific tree species, such as Pinus pinea (Stone Pine), reached a user accuracy (UA) of 84% with Pléiades versus 53% with Sentinel-2. These insights underscore the potential of integrating high-resolution remote sensing data into urban forestry practices to support sustainable urban management and planning.https://www.mdpi.com/2073-445X/14/1/106urban forestSentinel-2Pleiadesobject-based image analysis
spellingShingle Fabio Recanatesi
Antonietta De Santis
Lorenzo Gatti
Alessio Patriarca
Eros Caputi
Giulia Mancini
Chiara Iavarone
Carlo Maria Rossi
Gabriele Delogu
Miriam Perretta
Lorenzo Boccia
Maria Nicolina Ripa
A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
Land
urban forest
Sentinel-2
Pleiades
object-based image analysis
title A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
title_full A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
title_fullStr A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
title_full_unstemmed A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
title_short A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
title_sort comparative analysis of spatial resolution sentinel 2 and pleiades imagery for mapping urban tree species
topic urban forest
Sentinel-2
Pleiades
object-based image analysis
url https://www.mdpi.com/2073-445X/14/1/106
work_keys_str_mv AT fabiorecanatesi acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT antoniettadesantis acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT lorenzogatti acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT alessiopatriarca acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT eroscaputi acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT giuliamancini acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT chiaraiavarone acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT carlomariarossi acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT gabrieledelogu acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT miriamperretta acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT lorenzoboccia acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT marianicolinaripa acomparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT fabiorecanatesi comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT antoniettadesantis comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT lorenzogatti comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT alessiopatriarca comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT eroscaputi comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT giuliamancini comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT chiaraiavarone comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT carlomariarossi comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT gabrieledelogu comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT miriamperretta comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT lorenzoboccia comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies
AT marianicolinaripa comparativeanalysisofspatialresolutionsentinel2andpleiadesimageryformappingurbantreespecies