Summability of a Tchebysheff system of functions

We consider a special type of Tchebysheff systems of functions {ui(⋅)}in=0 and {Vi(⋅)}in=0 defined on the intervals (0, 1] and [1,+∞), respectively, such that ui(t)=tα0∫t1t1α1∫t11t2α2…∫ti−11tiαidtidti−1…dt1 and ui(t)=tβ0∫1tt1β1∫1t1t2β2…∫1ti−1tiβidtidti−1…dt1. We find necessary and sufficient conditi...

Full description

Saved in:
Bibliographic Details
Main Authors: Z. T. Abdikalikova, A. A. Kalybay
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2010/405313
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849409707566956544
author Z. T. Abdikalikova
A. A. Kalybay
author_facet Z. T. Abdikalikova
A. A. Kalybay
author_sort Z. T. Abdikalikova
collection DOAJ
description We consider a special type of Tchebysheff systems of functions {ui(⋅)}in=0 and {Vi(⋅)}in=0 defined on the intervals (0, 1] and [1,+∞), respectively, such that ui(t)=tα0∫t1t1α1∫t11t2α2…∫ti−11tiαidtidti−1…dt1 and ui(t)=tβ0∫1tt1β1∫1t1t2β2…∫1ti−1tiβidtidti−1…dt1. We find necessary and sufficient conditions under which functions from the investigated systems belong to the corresponding Lebesgue spaces Lp(0, 1) and Lp(1,+∞). In order to prove the main results we obtain lower and upper estimates of these functions that are of independent interest.
format Article
id doaj-art-7de1b6015de54beeaeec1e3e799c06e9
institution Kabale University
issn 0972-6802
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-7de1b6015de54beeaeec1e3e799c06e92025-08-20T03:35:24ZengWileyJournal of Function Spaces and Applications0972-68022010-01-01818710210.1155/2010/405313Summability of a Tchebysheff system of functionsZ. T. Abdikalikova0A. A. Kalybay1L.N. Gumilyev Eurasian National University, Munaytpasov st., 5, 010008 Astana, KazakhstanKazakhstan Institute of Management, Economics and Strategic Research, Abai ave., 4, 050010 Almaty, KazakhstanWe consider a special type of Tchebysheff systems of functions {ui(⋅)}in=0 and {Vi(⋅)}in=0 defined on the intervals (0, 1] and [1,+∞), respectively, such that ui(t)=tα0∫t1t1α1∫t11t2α2…∫ti−11tiαidtidti−1…dt1 and ui(t)=tβ0∫1tt1β1∫1t1t2β2…∫1ti−1tiβidtidti−1…dt1. We find necessary and sufficient conditions under which functions from the investigated systems belong to the corresponding Lebesgue spaces Lp(0, 1) and Lp(1,+∞). In order to prove the main results we obtain lower and upper estimates of these functions that are of independent interest.http://dx.doi.org/10.1155/2010/405313
spellingShingle Z. T. Abdikalikova
A. A. Kalybay
Summability of a Tchebysheff system of functions
Journal of Function Spaces and Applications
title Summability of a Tchebysheff system of functions
title_full Summability of a Tchebysheff system of functions
title_fullStr Summability of a Tchebysheff system of functions
title_full_unstemmed Summability of a Tchebysheff system of functions
title_short Summability of a Tchebysheff system of functions
title_sort summability of a tchebysheff system of functions
url http://dx.doi.org/10.1155/2010/405313
work_keys_str_mv AT ztabdikalikova summabilityofatchebysheffsystemoffunctions
AT aakalybay summabilityofatchebysheffsystemoffunctions