A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis

Abstract Radiology images are one of the most commonly used in daily clinical diagnosis. Typically, clinical diagnosis using radiology images involves disease reporting and classification, where the former is a multimodal task whereby textual reports are generated to describe clinical findings in im...

Full description

Saved in:
Bibliographic Details
Main Authors: Fenglin Liu, Zheng Li, Qingyu Yin, Jinfa Huang, Jiebo Luo, Anshul Thakur, Kim Branson, Patrick Schwab, Bing Yin, Xian Wu, Yefeng Zheng, David A. Clifton
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-024-01339-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861571061809152
author Fenglin Liu
Zheng Li
Qingyu Yin
Jinfa Huang
Jiebo Luo
Anshul Thakur
Kim Branson
Patrick Schwab
Bing Yin
Xian Wu
Yefeng Zheng
David A. Clifton
author_facet Fenglin Liu
Zheng Li
Qingyu Yin
Jinfa Huang
Jiebo Luo
Anshul Thakur
Kim Branson
Patrick Schwab
Bing Yin
Xian Wu
Yefeng Zheng
David A. Clifton
author_sort Fenglin Liu
collection DOAJ
description Abstract Radiology images are one of the most commonly used in daily clinical diagnosis. Typically, clinical diagnosis using radiology images involves disease reporting and classification, where the former is a multimodal task whereby textual reports are generated to describe clinical findings in images, as are common in various domains, e.g., chest X-ray or computed tomography. Existing approaches are mainly supervised, the quality of which heavily depends on the volume and quality of available labeled data. However, for rarer or more novel diseases, enrolling patients to collect data is both time-consuming and expensive. For non-English languages, sufficient quantities of labeled data are typically not available. We propose the Multimodal Multidomain Multilingual Foundation Model. It is useful for rare diseases and non-English languages, where the labeled data are frequently much more scarce, and may even be absent. Our approach achieves encouraging performances on nine datasets, including 2 infectious and 14 non-infectious diseases.
format Article
id doaj-art-7dd82fd56c034dcb9a938afd819d65ea
institution Kabale University
issn 2398-6352
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-7dd82fd56c034dcb9a938afd819d65ea2025-02-09T12:55:37ZengNature Portfolionpj Digital Medicine2398-63522025-02-018111210.1038/s41746-024-01339-7A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosisFenglin Liu0Zheng Li1Qingyu Yin2Jinfa Huang3Jiebo Luo4Anshul Thakur5Kim Branson6Patrick Schwab7Bing Yin8Xian Wu9Yefeng Zheng10David A. Clifton11Institute of Biomedical Engineering, Department of Engineering Science, University of OxfordAmazonAmazonDepartment of Computer Science, University of RochesterDepartment of Computer Science, University of RochesterInstitute of Biomedical Engineering, Department of Engineering Science, University of OxfordGlaxoSmithKlineGlaxoSmithKlineAmazonJarvis Research Center, Tencent YouTu LabMedical Artificial Intelligence Laboratory, Westlake UniversityInstitute of Biomedical Engineering, Department of Engineering Science, University of OxfordAbstract Radiology images are one of the most commonly used in daily clinical diagnosis. Typically, clinical diagnosis using radiology images involves disease reporting and classification, where the former is a multimodal task whereby textual reports are generated to describe clinical findings in images, as are common in various domains, e.g., chest X-ray or computed tomography. Existing approaches are mainly supervised, the quality of which heavily depends on the volume and quality of available labeled data. However, for rarer or more novel diseases, enrolling patients to collect data is both time-consuming and expensive. For non-English languages, sufficient quantities of labeled data are typically not available. We propose the Multimodal Multidomain Multilingual Foundation Model. It is useful for rare diseases and non-English languages, where the labeled data are frequently much more scarce, and may even be absent. Our approach achieves encouraging performances on nine datasets, including 2 infectious and 14 non-infectious diseases.https://doi.org/10.1038/s41746-024-01339-7
spellingShingle Fenglin Liu
Zheng Li
Qingyu Yin
Jinfa Huang
Jiebo Luo
Anshul Thakur
Kim Branson
Patrick Schwab
Bing Yin
Xian Wu
Yefeng Zheng
David A. Clifton
A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis
npj Digital Medicine
title A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis
title_full A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis
title_fullStr A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis
title_full_unstemmed A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis
title_short A multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis
title_sort multimodal multidomain multilingual medical foundation model for zero shot clinical diagnosis
url https://doi.org/10.1038/s41746-024-01339-7
work_keys_str_mv AT fenglinliu amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT zhengli amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT qingyuyin amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT jinfahuang amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT jieboluo amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT anshulthakur amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT kimbranson amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT patrickschwab amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT bingyin amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT xianwu amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT yefengzheng amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT davidaclifton amultimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT fenglinliu multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT zhengli multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT qingyuyin multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT jinfahuang multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT jieboluo multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT anshulthakur multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT kimbranson multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT patrickschwab multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT bingyin multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT xianwu multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT yefengzheng multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis
AT davidaclifton multimodalmultidomainmultilingualmedicalfoundationmodelforzeroshotclinicaldiagnosis