Auditing the clinical usage of deep-learning based organ-at-risk auto-segmentation in radiotherapy

For 18 months following clinical introduction of deep-learning auto-segmentation (DLAS), an audit of organ at risk (OAR) contour editing was performed, including 1255 patients from a single institution and the majority of tumour sites. Mean surface-Dice similarity coefficient increased from 0.87 to...

Full description

Saved in:
Bibliographic Details
Main Authors: Josh Mason, Jack Doherty, Sarah Robinson, Meagan de la Bastide, Jack Miskell, Ruth McLauchlan
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Physics and Imaging in Radiation Oncology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405631625000211
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For 18 months following clinical introduction of deep-learning auto-segmentation (DLAS), an audit of organ at risk (OAR) contour editing was performed, including 1255 patients from a single institution and the majority of tumour sites. Mean surface-Dice similarity coefficient increased from 0.87 to 0.97, the number of unedited OARs increased from 21.5 % to 40 %. The audit identified changes in editing corresponding to vendor model changes, adaption of local contouring practice and reduced editing in areas of no clinical significance. The audit allowed assessment of the level and frequency of editing and identification of outlier cases.
ISSN:2405-6316