Huang, R., McMahan, C., Herrin, B., McLain, A., Cai, B., & Self, S. Gradient boosting: A computationally efficient alternative to Markov chain Monte Carlo sampling for fitting large Bayesian spatio-temporal binomial regression models. KeAi Communications Co., Ltd.
Chicago Style (17th ed.) CitationHuang, Rongjie, Christopher McMahan, Brian Herrin, Alexander McLain, Bo Cai, and Stella Self. Gradient Boosting: A Computationally Efficient Alternative to Markov Chain Monte Carlo Sampling for Fitting Large Bayesian Spatio-temporal Binomial Regression Models. KeAi Communications Co., Ltd.
MLA (9th ed.) CitationHuang, Rongjie, et al. Gradient Boosting: A Computationally Efficient Alternative to Markov Chain Monte Carlo Sampling for Fitting Large Bayesian Spatio-temporal Binomial Regression Models. KeAi Communications Co., Ltd.