Surfaces of coordinate finite $ II $-type

We study the class of surfaces of revolution in the 3-dimensional Euclidean space $ E^{3} $ with nonvanishing Gauss curvature whose position vector $ \boldsymbol{x} $ satisfies the condition $ \Delta^{II}\boldsymbol{x} = A\boldsymbol{x} $, where $ A $ is a square matrix of order 3 and $ \Delta^{II}...

Full description

Saved in:
Bibliographic Details
Main Author: Mutaz Al-Sabbagh
Format: Article
Language:English
Published: AIMS Press 2025-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2025285
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850216276933214208
author Mutaz Al-Sabbagh
author_facet Mutaz Al-Sabbagh
author_sort Mutaz Al-Sabbagh
collection DOAJ
description We study the class of surfaces of revolution in the 3-dimensional Euclidean space $ E^{3} $ with nonvanishing Gauss curvature whose position vector $ \boldsymbol{x} $ satisfies the condition $ \Delta^{II}\boldsymbol{x} = A\boldsymbol{x} $, where $ A $ is a square matrix of order 3 and $ \Delta^{II} $ denotes the Laplace operator of the second fundamental form $ II $ of the surface. We show that a surface of revolution satisfying the preceding relation is a catenoid or part of a sphere.
format Article
id doaj-art-7d7ee93a1f674008b8398b885bdac5e4
institution OA Journals
issn 2473-6988
language English
publishDate 2025-03-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-7d7ee93a1f674008b8398b885bdac5e42025-08-20T02:08:20ZengAIMS PressAIMS Mathematics2473-69882025-03-011036258626910.3934/math.2025285Surfaces of coordinate finite $ II $-typeMutaz Al-Sabbagh0Department of Basic Engineering Sciences, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi ArabiaWe study the class of surfaces of revolution in the 3-dimensional Euclidean space $ E^{3} $ with nonvanishing Gauss curvature whose position vector $ \boldsymbol{x} $ satisfies the condition $ \Delta^{II}\boldsymbol{x} = A\boldsymbol{x} $, where $ A $ is a square matrix of order 3 and $ \Delta^{II} $ denotes the Laplace operator of the second fundamental form $ II $ of the surface. We show that a surface of revolution satisfying the preceding relation is a catenoid or part of a sphere.https://www.aimspress.com/article/doi/10.3934/math.2025285surfaces in $ e^{3} $surfaces of revolutionsurfaces of coordinate finite typebeltrami operator
spellingShingle Mutaz Al-Sabbagh
Surfaces of coordinate finite $ II $-type
AIMS Mathematics
surfaces in $ e^{3} $
surfaces of revolution
surfaces of coordinate finite type
beltrami operator
title Surfaces of coordinate finite $ II $-type
title_full Surfaces of coordinate finite $ II $-type
title_fullStr Surfaces of coordinate finite $ II $-type
title_full_unstemmed Surfaces of coordinate finite $ II $-type
title_short Surfaces of coordinate finite $ II $-type
title_sort surfaces of coordinate finite ii type
topic surfaces in $ e^{3} $
surfaces of revolution
surfaces of coordinate finite type
beltrami operator
url https://www.aimspress.com/article/doi/10.3934/math.2025285
work_keys_str_mv AT mutazalsabbagh surfacesofcoordinatefiniteiitype