Numerical solution of first-order exact differential equations by the integrating factor method

A numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a ''new'' numerical method for integrating functions. Robust determination of the integrating factors is implemented by us...

Full description

Saved in:
Bibliographic Details
Main Authors: Sevastianov, Leonid A., Lovetskiy, Konstantin P., Kulyabov, Dmitry Sergeevich, Sergeev, Stepan V.
Format: Article
Language:English
Published: Saratov State University 2024-11-01
Series:Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
Subjects:
Online Access:https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2024/11/512-525-sevastianov_et_al.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846149891911319552
author Sevastianov, Leonid A.
Lovetskiy, Konstantin P.
Kulyabov, Dmitry Sergeevich
Sergeev, Stepan V.
author_facet Sevastianov, Leonid A.
Lovetskiy, Konstantin P.
Kulyabov, Dmitry Sergeevich
Sergeev, Stepan V.
author_sort Sevastianov, Leonid A.
collection DOAJ
description A numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a ''new'' numerical method for integrating functions. Robust determination of the integrating factors is implemented by using the Chebyshev interpolation of the desired functions and performing calculations on Gauss – Lobatto grids, which ensure the discrete orthogonality of the Chebyshev matrices. After that, the integration procedure is carried out using the Chebyshev integration matrices. The integrating factor and the final potential of the ODE solution are presented as interpolation polynomials depending on a limited number of numerically recoverable expansion coefficients.
format Article
id doaj-art-7d278b76b62a4c19b3178e64e1dcd2dc
institution Kabale University
issn 1816-9791
2541-9005
language English
publishDate 2024-11-01
publisher Saratov State University
record_format Article
series Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
spelling doaj-art-7d278b76b62a4c19b3178e64e1dcd2dc2024-11-29T09:51:53ZengSaratov State UniversityИзвестия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика1816-97912541-90052024-11-0124451252510.18500/1816-9791-2024-24-4-512-525Numerical solution of first-order exact differential equations by the integrating factor methodSevastianov, Leonid A.0Lovetskiy, Konstantin P.1Kulyabov, Dmitry Sergeevich2Sergeev, Stepan V.3Peoples’ Friendship University of Russia named after Patrice Lumumba, 6, Miklukho-Maklaya St., Moscow, 117198, RussiaPeoples’ Friendship University of Russia named after Patrice Lumumba, 6, Miklukho-Maklaya St., Moscow, 117198, RussiaPeoples’ Friendship University of Russia named after Patrice Lumumba, 6, Miklukho-Maklaya St., Moscow, 117198, RussiaPeoples’ Friendship University of Russia named after Patrice Lumumba, 6, Miklukho-Maklaya St., Moscow, 117198, RussiaA numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a ''new'' numerical method for integrating functions. Robust determination of the integrating factors is implemented by using the Chebyshev interpolation of the desired functions and performing calculations on Gauss – Lobatto grids, which ensure the discrete orthogonality of the Chebyshev matrices. After that, the integration procedure is carried out using the Chebyshev integration matrices. The integrating factor and the final potential of the ODE solution are presented as interpolation polynomials depending on a limited number of numerically recoverable expansion coefficients.https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2024/11/512-525-sevastianov_et_al.pdfspectral methodcollocationintegrating factorsintegration matricesrecovery of coefficientsinverse problem
spellingShingle Sevastianov, Leonid A.
Lovetskiy, Konstantin P.
Kulyabov, Dmitry Sergeevich
Sergeev, Stepan V.
Numerical solution of first-order exact differential equations by the integrating factor method
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
spectral method
collocation
integrating factors
integration matrices
recovery of coefficients
inverse problem
title Numerical solution of first-order exact differential equations by the integrating factor method
title_full Numerical solution of first-order exact differential equations by the integrating factor method
title_fullStr Numerical solution of first-order exact differential equations by the integrating factor method
title_full_unstemmed Numerical solution of first-order exact differential equations by the integrating factor method
title_short Numerical solution of first-order exact differential equations by the integrating factor method
title_sort numerical solution of first order exact differential equations by the integrating factor method
topic spectral method
collocation
integrating factors
integration matrices
recovery of coefficients
inverse problem
url https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2024/11/512-525-sevastianov_et_al.pdf
work_keys_str_mv AT sevastianovleonida numericalsolutionoffirstorderexactdifferentialequationsbytheintegratingfactormethod
AT lovetskiykonstantinp numericalsolutionoffirstorderexactdifferentialequationsbytheintegratingfactormethod
AT kulyabovdmitrysergeevich numericalsolutionoffirstorderexactdifferentialequationsbytheintegratingfactormethod
AT sergeevstepanv numericalsolutionoffirstorderexactdifferentialequationsbytheintegratingfactormethod