Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructure

Abstract Spin-orbit torque (SOT) provides a promising mechanism for electrically encoding information in magnetic states. Unlike existing schemes, where the SOT is passively determined by the material and device structures, an active manipulation of the intrinsic SOT polarity would allow for flexibl...

Full description

Saved in:
Bibliographic Details
Main Authors: Ju-Young Yoon, Yutaro Takeuchi, Ryota Takechi, Jiahao Han, Tomohiro Uchimura, Yuta Yamane, Shun Kanai, Jun’ichi Ieda, Hideo Ohno, Shunsuke Fukami
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56157-6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861815732338688
author Ju-Young Yoon
Yutaro Takeuchi
Ryota Takechi
Jiahao Han
Tomohiro Uchimura
Yuta Yamane
Shun Kanai
Jun’ichi Ieda
Hideo Ohno
Shunsuke Fukami
author_facet Ju-Young Yoon
Yutaro Takeuchi
Ryota Takechi
Jiahao Han
Tomohiro Uchimura
Yuta Yamane
Shun Kanai
Jun’ichi Ieda
Hideo Ohno
Shunsuke Fukami
author_sort Ju-Young Yoon
collection DOAJ
description Abstract Spin-orbit torque (SOT) provides a promising mechanism for electrically encoding information in magnetic states. Unlike existing schemes, where the SOT is passively determined by the material and device structures, an active manipulation of the intrinsic SOT polarity would allow for flexibly programmable SOT devices. Achieving this requires electrical control of the current-induced spin polarization of the spin source. Here we demonstrate a proof-of-concept current-programmed SOT device. Using a noncollinear-antiferromagnetic/nonmagnetic/ferromagnetic Mn3Sn/Mo/CoFeB heterostructure at zero magnetic field, we show current-induced switching in the CoFeB layer due to the spin current polarized by the magnetic structure of the Mn3Sn; by properly tuning the driving current, the spin current from the CoFeB further reverses the magnetic orientation of the Mn3Sn, which determines the polarity of the subsequent switching of the CoFeB. This scheme of mutual switching can be achieved in a spin-valve-like simple protocol because each magnetic layer serves as a reversible spin source and target magnetic electrode. It yields intriguing proof-of-concept functionalities for unconventional logic and neuromorphic computing.
format Article
id doaj-art-7d24aa282b144ba2bc10a6425adcaefb
institution Kabale University
issn 2041-1723
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-7d24aa282b144ba2bc10a6425adcaefb2025-02-09T12:44:13ZengNature PortfolioNature Communications2041-17232025-02-011611810.1038/s41467-025-56157-6Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructureJu-Young Yoon0Yutaro Takeuchi1Ryota Takechi2Jiahao Han3Tomohiro Uchimura4Yuta Yamane5Shun Kanai6Jun’ichi Ieda7Hideo Ohno8Shunsuke Fukami9Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityAdvanced Science Research Center, Japan Atomic Energy AgencyLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku UniversityAbstract Spin-orbit torque (SOT) provides a promising mechanism for electrically encoding information in magnetic states. Unlike existing schemes, where the SOT is passively determined by the material and device structures, an active manipulation of the intrinsic SOT polarity would allow for flexibly programmable SOT devices. Achieving this requires electrical control of the current-induced spin polarization of the spin source. Here we demonstrate a proof-of-concept current-programmed SOT device. Using a noncollinear-antiferromagnetic/nonmagnetic/ferromagnetic Mn3Sn/Mo/CoFeB heterostructure at zero magnetic field, we show current-induced switching in the CoFeB layer due to the spin current polarized by the magnetic structure of the Mn3Sn; by properly tuning the driving current, the spin current from the CoFeB further reverses the magnetic orientation of the Mn3Sn, which determines the polarity of the subsequent switching of the CoFeB. This scheme of mutual switching can be achieved in a spin-valve-like simple protocol because each magnetic layer serves as a reversible spin source and target magnetic electrode. It yields intriguing proof-of-concept functionalities for unconventional logic and neuromorphic computing.https://doi.org/10.1038/s41467-025-56157-6
spellingShingle Ju-Young Yoon
Yutaro Takeuchi
Ryota Takechi
Jiahao Han
Tomohiro Uchimura
Yuta Yamane
Shun Kanai
Jun’ichi Ieda
Hideo Ohno
Shunsuke Fukami
Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructure
Nature Communications
title Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructure
title_full Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructure
title_fullStr Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructure
title_full_unstemmed Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructure
title_short Electrical mutual switching in a noncollinear-antiferromagnetic–ferromagnetic heterostructure
title_sort electrical mutual switching in a noncollinear antiferromagnetic ferromagnetic heterostructure
url https://doi.org/10.1038/s41467-025-56157-6
work_keys_str_mv AT juyoungyoon electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT yutarotakeuchi electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT ryotatakechi electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT jiahaohan electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT tomohirouchimura electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT yutayamane electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT shunkanai electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT junichiieda electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT hideoohno electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure
AT shunsukefukami electricalmutualswitchinginanoncollinearantiferromagneticferromagneticheterostructure