A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects

Abstract Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100 MPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain ( > 1%) remains unclear. Here,...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Qin, Zehao Jing, Da Zou, Youhao Wang, Hongtao Yang, Kai Chen, Weishi Li, Peng Wen, Yufeng Zheng
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-57609-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850028006305693696
author Yu Qin
Zehao Jing
Da Zou
Youhao Wang
Hongtao Yang
Kai Chen
Weishi Li
Peng Wen
Yufeng Zheng
author_facet Yu Qin
Zehao Jing
Da Zou
Youhao Wang
Hongtao Yang
Kai Chen
Weishi Li
Peng Wen
Yufeng Zheng
author_sort Yu Qin
collection DOAJ
description Abstract Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100 MPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain ( > 1%) remains unclear. Here, we introduce a metamaterial scaffold that decouples strength and modulus through two-stage deformation. The scaffold facilitates an effective modulus of only 13 MPa, ensuring adaptability during bone regeneration. Followed by a stiff stage, it provides the necessary strength for load-bearing requirements. In vivo, the scaffold induces > 2% callus strain, upregulating calcium channels and HIF-1α to enhance osteogenesis and angiogenesis. 4-week histomorphology reveals a 44% and 498% increase in new bone fraction versus classic scaffolds with 500 MPa and 13 MPa modulus, respectively. This design transcends traditional modulus-matching paradigms, prioritizing bone tissue strain requirements. Its tunable mechanical properties also present promising implications for advancing osteogenesis mechanisms and addressing clinical challenges.
format Article
id doaj-art-7cfe365701a442a1a1df1bb485a74f8f
institution DOAJ
issn 2041-1723
language English
publishDate 2025-03-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-7cfe365701a442a1a1df1bb485a74f8f2025-08-20T02:59:57ZengNature PortfolioNature Communications2041-17232025-03-0116111210.1038/s41467-025-57609-9A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defectsYu Qin0Zehao Jing1Da Zou2Youhao Wang3Hongtao Yang4Kai Chen5Weishi Li6Peng Wen7Yufeng Zheng8School of Materials Science and Engineering, Peking UniversityDepartment of Orthopedics, Peking University Third HospitalDepartment of Orthopedics, Peking University Third HospitalDepartment of Orthopedics, Peking University Third HospitalSchool of Biological Science and Medical Engineering, Beihang UniversitySchool of Materials Science and Engineering, Peking UniversityDepartment of Orthopedics, Peking University Third HospitalDepartment of Mechanical Engineering, Tsinghua UniversitySchool of Materials Science and Engineering, Peking UniversityAbstract Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100 MPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain ( > 1%) remains unclear. Here, we introduce a metamaterial scaffold that decouples strength and modulus through two-stage deformation. The scaffold facilitates an effective modulus of only 13 MPa, ensuring adaptability during bone regeneration. Followed by a stiff stage, it provides the necessary strength for load-bearing requirements. In vivo, the scaffold induces > 2% callus strain, upregulating calcium channels and HIF-1α to enhance osteogenesis and angiogenesis. 4-week histomorphology reveals a 44% and 498% increase in new bone fraction versus classic scaffolds with 500 MPa and 13 MPa modulus, respectively. This design transcends traditional modulus-matching paradigms, prioritizing bone tissue strain requirements. Its tunable mechanical properties also present promising implications for advancing osteogenesis mechanisms and addressing clinical challenges.https://doi.org/10.1038/s41467-025-57609-9
spellingShingle Yu Qin
Zehao Jing
Da Zou
Youhao Wang
Hongtao Yang
Kai Chen
Weishi Li
Peng Wen
Yufeng Zheng
A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects
Nature Communications
title A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects
title_full A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects
title_fullStr A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects
title_full_unstemmed A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects
title_short A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects
title_sort metamaterial scaffold beyond modulus limits enhanced osteogenesis and angiogenesis of critical bone defects
url https://doi.org/10.1038/s41467-025-57609-9
work_keys_str_mv AT yuqin ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT zehaojing ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT dazou ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT youhaowang ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT hongtaoyang ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT kaichen ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT weishili ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT pengwen ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT yufengzheng ametamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT yuqin metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT zehaojing metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT dazou metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT youhaowang metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT hongtaoyang metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT kaichen metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT weishili metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT pengwen metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects
AT yufengzheng metamaterialscaffoldbeyondmoduluslimitsenhancedosteogenesisandangiogenesisofcriticalbonedefects