Contrastive Mask Learning for Self-Supervised 3D Skeleton-Based Action Recognition

In this paper, we propose a contrastive mask learning (CML) method for self-supervised 3D skeleton-based action recognition. Specifically, the mask modeling mechanism is integrated into multi-level contrastive learning with the aim of forming a mutually beneficial learning scheme from both contrasti...

Full description

Saved in:
Bibliographic Details
Main Author: Haoyuan Zhang
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/5/1521
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a contrastive mask learning (CML) method for self-supervised 3D skeleton-based action recognition. Specifically, the mask modeling mechanism is integrated into multi-level contrastive learning with the aim of forming a mutually beneficial learning scheme from both contrastive learning and masked skeleton reconstruction. The contrastive objective is extended from an individual skeleton instance to clusters by closing the gap between cluster assignment from different instances of the same category, with the goal of pursuing inter-instance consistency. Compared with previous methods, CML integrates contrastive and masked learning comprehensively and enables intra-/inter-instance consistency pursuit via multi-level contrast, which leads to more discriminative skeleton representation learning. Our extensive evaluation of the challenging NTU RGB+D and PKU-MMD benchmarks demonstrates that representations learned via CML exhibit superior discriminability, consistently outperforming state-of-the-art methods in terms of action recognition accuracy.
ISSN:1424-8220