Enzyme–and GSH–responsive gelatin coated magnetic multi-shell hollow mesoporous organosilicon nanoparticles for avermectin controlled release
Abstract To enhance the utilization of pesticides and reduce environmental risks, we constructed the magnetic recyclable and dual stimulus-responsive microspheres to achieve on-demand pesticide release. Magnetic multi-shell hollow mesoporous organosilicon nanoparticles (mMSN) were prepared by one-st...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-04-01
|
| Series: | Collagen and Leather |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s42825-025-00191-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract To enhance the utilization of pesticides and reduce environmental risks, we constructed the magnetic recyclable and dual stimulus-responsive microspheres to achieve on-demand pesticide release. Magnetic multi-shell hollow mesoporous organosilicon nanoparticles (mMSN) were prepared by one-step hydrothermal method and loaded with pesticide avermectin (A@mMSN), afterward A@mMSN was coated with gelatin through emulsification and chemical cross-linking to prepare A@mMSN@G microspheres (21.5 ± 9.7 μm). After being absorbed by the pests, the gelatin layer was hydrolyzed with the neutral protease, and the disulfide bonds within mMSN framework were decomposed by glutathione (GSH), endowing A@mMSN@G microspheres with enzyme and GSH responsiveness to achieve sustained avermectin release till 7 days (about 3.5 times that of the commercial avermectin emulsion). Importantly, the A@mMSN@G microspheres containing Fe3O4 nanoparticles could be easily magnetically collected from soil with a recovery ratio of 63.7%, to reduce the environmental risks. With excellent biosafety, A@mMSN@G microspheres showed outstanding pest control effects till two weeks and the growth of cabbage was not affected by it. Therefore, based on the recyclability and dual stimulus-responsive controllable release, the fabricated A@mMSN@G microspheres have broad application potential in pesticide delivery. Graphical abstract |
|---|---|
| ISSN: | 2097-1419 2731-6998 |